期刊文献+

船舶监控网络入侵检测系统设计 被引量:5

Design of intrusion detection system for ship monitoring network
下载PDF
导出
摘要 为了提高船舶监控网络的安全性,进行网络入侵的准确检测,提出一种基于数据流的船舶监控网络入侵检测系统设计方法,采用数据流异常特征检测方法进行网络入侵检测算法设计,采用自适应波束形成方法进行船舶监控网络传输数据流的聚焦处理,提取船舶监控网络传输数据流的多源波束特征量,实现异常监控识别,对提取的异常监控信息进行分类处理,实现入侵检测。在嵌入式ARM环境中进行入侵检测系统软件设计。仿真结果表明,采用该系统进行船舶监控网络入侵检测的准确性较高,网络安全性较好。 In order to improve the safety of ship monitoring and control network,the network intrusion detection accuracy,proposes a ship monitoring network based on data stream intrusion detection system design method,using data flow anomaly detection method of network intrusion detection algorithm design,adaptive beamforming method is used to focus the ship monitoring network data stream.Multisource beam characteristics of ship monitoring network data stream transmission,realize monitoring abnormal recognition,classification and treatment of abnormal monitoring information was extracted,implementation of intrusion detection.In the embedded ARM environment for intrusion detection system software design.The simulation results show that the ship monitoring network intrusion detection accuracy of the system network good safety.
作者 陈志忠
出处 《舰船科学技术》 北大核心 2018年第2X期178-180,共3页 Ship Science and Technology
关键词 数据流 船舶 监控网络 入侵检测 data flow ship monitoring network intrusion detection
  • 相关文献

参考文献4

二级参考文献41

  • 1刘雁,慕德俊.最大Lyapunov指数实现局域网流量的预测[J].西北工业大学学报,2009,27(2):219-223. 被引量:13
  • 2Gross J,Janke W,Banchmann M.Massively parallelized replica-exchange simulations of polymers on GPUs [J].Comput.Phys.Comm.,2011,182:1638-1644.
  • 3Bimal K M, Gholam M A. Differential epidemic model of virus and worms in computer network [J]. International Journal of Network Security,2012,14(3) : 149-155.
  • 4Li Hong, Qian Chang-j i, Sun Li-zhen, et al. Simulation of a flexi- ble polymer tethered to a flat adsorbing surface [J]. Journal of Applied Polymer Science, 2012,124 : 282-287.
  • 5Zhu Q Y, Yang X F, Yang L X, et al. Optimal control of computer virus under a delayed model [J]. Applied Mathematics and Com putation, 2012,218(23) : 11613-11619.
  • 6WU Shilong, LUO Jingqing, and GONG Liangliang. Joint FDOA and TDOA location algorithm and performance analysis of dual-satellite formations[C]. 2010 2nd International Conference on Signal Processing Systems (ICSPS), Dalian, 2010, V2-339-V2-342. doi: 10.1109/ICSPS. 2010.5555463.
  • 7YEREDOR A. Quantifying the advantages of joint processing in TDOA estimation[C]. IEEE 7th Sensor Array and Multichannal Signal Processing Workshop (SAM), Hoboken, NJ, 2012: 205-208. doi: 10.1109/SAM. 2012. 6250468.
  • 8DANDAWATR A V and GIANNAKIS G B. Differential delay-Doppler estimation using second- and higher-order ambiguity functions[J]. IEE Proceedings F, Radar and Signal Processing, 1993, 140(6): 410-418.
  • 9WANG Hongzhi, XU Peixin, and BI Aiqi. A new adaptive time delay estimation using fourth-order cumulants based on polarity iterative[C]. 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), Sopporo, 2014, 1: 257-259.
  • 10YAO Guangxiang, LIU Zhiwen, and XU You-gen. TDOA/FDOA joint estimation in a correlated noise environment[C]. IEEE International Symposium on Microwave, Antenna, Propagation and Technologies, Beijing, 2005, 1: 831-834.

共引文献158

同被引文献33

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部