期刊文献+

船用起重机机械的减摇控制方法

Anti-rolling control method of marine crane machinery
下载PDF
导出
摘要 为了降低船用起重机的摇晃度,进行减摇控制,提出基于稳态反馈补偿调节的船用起重机机械的减摇控制方法,构建船用起重机机械的减摇控制约束参量模型,以摇摆幅值、转动力矩、惯性力矩等为反馈调节参数,进行起重机机械的减摇稳态误差补偿控制,结合Lyapunov稳定性原理,引入后置积分项进行减摇控制器末端位姿修正,较低摇摆幅度,实现摇摆的实时误差补偿。仿真结果表明,采用该方法进行船用起重机机械的减摇控制,摇摆幅值得到有效控制,姿态稳定性较好。 In order to reduce the rocking degree of marine crane, the anti-rolling control method based on steady-state feedback compensation regulation is put forward. The anti-rolling control constraint parameter model of marine crane machinery is constructed. The rolling amplitude, rotational moment and inertia moment are used as feedback adjusting parameters to compensate the steady-state error of anti-rolling of crane machinery. Combined with the principle of Lyapunov stability, the post integral term is introduced to modify the terminal position and pose of the anti-rolling controller, so that the rocking amplitude is lower, and the real-time error compensation of rocking is realized. The simulation results show that.This method is applied to the anti-rolling control of marine crane machinery, the swing amplitude is effectively controlled,and the attitude stability is good.
作者 毛锡锋
出处 《舰船科学技术》 北大核心 2018年第3X期37-39,共3页 Ship Science and Technology
关键词 船用起重机 机械 减摇控制 误差补偿 marine crane machinery anti-rolling control error compensation
  • 相关文献

参考文献4

二级参考文献40

  • 1程永.面源红外假目标特征参数分析[J].水雷战与舰船防护,2012,20(1):72-73. 被引量:6
  • 2谌龙,王德石.陈氏混沌系统的稳定追踪控制[J].控制与决策,2007,22(8):935-938. 被引量:2
  • 3Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8): 821-824.
  • 4Mahmoud E E. Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems[J]. Mathematical Methods in the Applied Sciences, 2014, 37(3): 321-328.
  • 5Matheny M H, Grau M, Villanueva L G, et al. Phase synchronization of two anharmonic nanomechanical oscillators[J]. Physical Review Letters, 2014, 112(1): 014101.
  • 6Njah A N. Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques[J]. Nonlinear Dynamics, 2010, 61(1/2): 1-9.
  • 7Lü L, Luan L, Meng L, et al. Study on spatiotemporal chaos tracking synchronization of a class of complex network[J]. Nonlinear Dynamics, 2012, 70(1): 89-95.
  • 8Li C L. Tracking control and generalized projective synchronization of a class of hyperchaotic system with unknown parameter and disturbance[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 405-413.
  • 9Sun K H, Sprott J C. Dynamics of a simplified Lorenz system[J]. International Journal of Bifurcation and Chaos, 2009, 19(4): 1357-1366.
  • 10Chen G, Lewis F L. Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(3): 805-816.

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部