期刊文献+

基于关联规则的船舶故障数据自动分类方法 被引量:4

Automatic classification method of ship fault data based on association rules
下载PDF
导出
摘要 传统船舶的故障数据自动分类方法,存在故障数据类型定义不准确、分类时间过长等弊端。为有效解决上述问题,设计基于关联规则的新型船舶故障数据自动分类方法。通过船舶故障数据的采集及预处理、数据的进一步挖掘两大步骤,完成关联规则下的船舶故障数据感知。通过BP自动分类神经网络设计、船舶故障数据的归一化处理、HIWO自动分类算法设计三大步骤,完成新型船舶故障数据自动分类方法的搭建。设计对比实验结果表明,新型船舶故障数据自动分类方法,与传统方法相比,可以在提升故障数据类型定义准确性的同时,有效控制分类时间。 The automatic classification method of traditional ship′s fault data has some disadvantages,such as the inaccurate definition of fault data type and the long classification time. In order to solve the above problems, a new automatic classification method of ship fault data based on association rules is designed. By the two steps of collecting and preprocessing the data of the ship′s fault and mining the data, the ship fault data perception under the association rules is completed. Through BP automatic classification neural network design, ship fault data normalization processing, HIWO automatic classification algorithm design three steps,we completed the new ship fault data automatic classification method. The design comparison experiment results show that compared with the traditional methods, the new automatic classification method of ship fault data can improve the accuracy of fault data type and control the classification time effectively.
作者 杨桦
出处 《舰船科学技术》 北大核心 2018年第6X期55-57,共3页 Ship Science and Technology
关键词 关联规则 故障数据 自动分类 数据预处理 数据挖掘 神经网络 归一化 HIWO association rules fault data automatic classification data preprocessing data mining neural network normalization HIWO
  • 相关文献

参考文献4

二级参考文献43

  • 1孔凡让,朱忠奎,羊拯民,俞巧云,殷明华,王建平.齿轮振动信号特征的小波包频率表示法[J].振动.测试与诊断,2004,24(2):103-105. 被引量:5
  • 2李庆民,王冠,徐国政,钱家骊.高压断路器振动信号的指数衰减振荡波建模方法[J].高压电器,2004,40(3):177-179. 被引量:14
  • 3陈铿,韩伯棠.混沌时间序列分析中的相空间重构技术综述[J].计算机科学,2005,32(4):67-70. 被引量:86
  • 4陈予恕.机械故障诊断的非线性动力学原理[J].机械工程学报,2007,43(1):25-34. 被引量:56
  • 5韩立群.人工神经网络[M].北京:北京邮电出版社,2006.
  • 6冯伟兴,梁洪,王臣业.VisualC+ +数字图像模式识别典型案例详解[M].北京:机械工业出版社,2012: 159-162.
  • 7LIU Y, LI K,SONG S,et al. The research of spacecraft electri- cal characteristics identification and diagnosis using PCA fea- ture extraction signal processing[ C ]//International Conference on Signal Processing ( ICSP ). Piscataway, N J: IEEE Press, 2014 : 1413-1417.
  • 8LIU Y, LI K, HUANG Y, et al. Spacecraft electrical characteris-tics identification study based on offline FCM clustering and on- line SVM classifier [ C ] //Muhisensor Fusion and Information Integration for Intelligent Systems ( MFI). Piscataway, NJ : IEEE Press, 2014 : 1 4.
  • 9HUANG H,ZHU Y W,YANG L P,et al. Stability and shape analysis of relative equilibrium for three-spacecraft electromag- netic formation [ J]. Acta Astronaatica,2014,94( 1 ) : 116-131.
  • 10KENIG S, BEN-DAVID A, OMER M, et al. Control of proper- ties in injection molding by neural networks [ J ]. Engineering Applications of Artificial Intelligence, 2001,14 ( 6 ) : 819 -823.

共引文献58

同被引文献38

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部