期刊文献+

基于模式识别的船舶异常行为自动报警方法 被引量:2

Automatic alarm method for ship abnormal behavior based on pattern recognition
下载PDF
导出
摘要 异常行为的出现,会对船舶正常航行造成较大影响。为避免上述现象的出现,设计基于模式识别的船舶异常行为自动报警方法。通过主成分分析、成分因子相关性分析2个步骤,完成基于模式识别的船舶异常行为特征提取。通过异常行为的局部决策、基于决策结果的数据融合2个步骤,完成基于模式识别船舶异常行为自动报警方法的搭建。模拟方法运行环境,设计对比实验结果表明,应用基于模式识别船舶异常行为自动报警方法,可以明显降低船舶异常行为的发生几率,为船舶正常航行提供有力保障。 The occurrence of abnormal behavior will have a great influence on the normal navigation of ships. In order to avoid these phenomena, we design an automatic alarm method for ship abnormal behavior based on pattern recognition.Through two steps of principal component analysis and component factor correlation analysis, we complete the feature extraction of ship abnormal behavior based on pattern recognition. By the two steps of local decision of abnormal behavior and data fusion based on decision results, the method of automatic alarm for ship abnormal behavior based on pattern recognition is built. The simulation results show that the automatic alarm method based on pattern recognition for ship abnormal behavior can obviously reduce the probability of the abnormal behavior of the ship and provide a powerful guarantee for the normal navigation of the ship.
作者 杨锋
出处 《舰船科学技术》 北大核心 2018年第7X期43-45,共3页 Ship Science and Technology
关键词 模式识别 船舶异常行为 自动报警 主成分分析 相关性分析 局部决策 数据融合 pattern recognition ship abnormal behavior automatic alarm principal component analysis correlation analysis local decision making data fusion
  • 相关文献

参考文献4

二级参考文献54

  • 1龙军,殷建平,祝恩,赵文涛.主动学习研究综述[J].计算机研究与发展,2008,45(z1):300-304. 被引量:31
  • 2陈宏毅.用故障树分析法对现代消防系统进行可靠性分析[J].消防技术与产品信息,1995(8):7-14. 被引量:6
  • 3赵海荣.火灾自动报警系统可靠性分析及应用效能评价[D].沈阳:东北大学,2009.
  • 4李骆.舰船火灾结构建模及消防系统故障分析研究[D].哈尔滨:哈尔滨工程大学,2011,12.
  • 5LI W X, MAHADEVAN V, VASCONCELOS N. Anomaly Detection and Localization in Crowded Scenes. IEEE Trans on Pattern Analy- sis and Machine Intelligence, 2014, 36( 1 ) : 18-32.
  • 6HUO J, GAO Y, YANG W Q, et al. Multi-instance Dictionary Learning for Detecting Abnormal Events in Surveillance Videos. In- ternational Journal of Neural Systems, 2014, 24(3) : 478-491.
  • 7LOY C C, XIANG T, GONG S G. Stream-Based Active Unusual Event Detection/! Proe of the 10th Asian Conference on Computer Vision. Queenstown, New Zealand, 2010, I: 161-175.
  • 8XIANG T, GONG S G. Video Behavior Profiling for Anomaly Detec- tion. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(5) : 893-908.
  • 9TUNG F, ZELEK J S, CLAUSI D A. Goal-Based Trajectory Analy- sis for Unusual Behaviour Detection in Intelligent Surveillance. Image and Vision Computing, 2011,29(4) : 230-240.
  • 10WU X Y, OU Y S, QIAN H H, et al. A Detection System for Hu- man Abnormal Behavior//Proc of the IEEE/RSJ International Con- ference on Intelligent Robots and Systems. Edmonton, Canada, 2005 : 1204-1208.

共引文献40

同被引文献23

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部