摘要
针对当前舰船信息管理系统风险评价存在速度慢、实时性低等缺陷,设计了基于大数据分析的舰船信息管理系统风险评价方法。首先建立舰船信息管理系统风险评估的指标体系,然后采用层次分析法确定指标的权值,并采用主成分分析法选择重要的舰船信息管理系统风险评估指标,最后采用云计算平台并行执行舰船信息管理系统风险评价,每一个节点采用RBF神经网络实现评价,具体的测试实验结果表明,本文方法不仅加快了舰船信息管理系统风险评价速度,而且提升了舰船信息管理系统风险评价精度,评估结果更加可靠。
In view of the shortcomings of the current ship information management system, such as slow speed and real time, the risk evaluation method of ship information management system based on large data analysis is designed. First, the index system of risk assessment for ship information management system is set up, then the weight value of the index is determined by the analytic hierarchy process, and the main component analysis is used to select the important risk assessment index of the ship information management system. Finally, the risk evaluation of the ship information management system is implemented by the cloud computing platform, and each node adopts the RB F neural network is realized, and the test results show that this method not only speeds up the risk assessment speed of ship information management system, but also improves the risk evaluation accuracy of ship information management system, and the evaluation result is more reliable.
出处
《舰船科学技术》
北大核心
2018年第7X期160-162,共3页
Ship Science and Technology
关键词
舰船信息管理系统
风险评价方法
主成分分析
大数据分析
warship information management system
risk assessment method
principal component analysis
big data analysis