期刊文献+

不确定负荷下船舶微网功率自适应控制方法 被引量:1

Adaptive power control method for ship microgrids under uncertain loads
下载PDF
导出
摘要 传统自适应控制方法不能根据船舶航行情况,及时调整负载电荷的输出功率。为解决此问题,设计基于不确定负荷的船舶微网功率自适应控制方法。通过基本规划原理分析、控制范围协调2个步骤,完成不确定负荷下船舶自适应控制范围规划。通过微网智能体结构搭建、控制流程完善、多环控制范围确定3个步骤,实现新型船舶微网自适应控制方法的顺利运行。模拟方法应用环境,设计对比实验结果表明,与传统控制方法相比,新型船舶微网自适应控制方法在低、高频航行情况下,都可以实现船舶负载电荷输出功率的及时调整。 The traditional adaptive control method can not adjust the output power of the load charge in time according to the navigation condition of the ship. To solve this problem, a power adaptive control method of ship microgrid based on uncertain load is designed. Through the basic planning principle analysis and the control area coordination two steps, the ship adaptive control range planning under uncertain load is completed. Through the construction of the micro network agent structure, the control process and the multi loop control range, three steps are made to realize the smooth operation of the new self-adaptive control method of the new type of micro network. The simulation method is applied to the environment and the experimental results show that, compared with the traditional control method, the new adaptive control method of the new ship micro network can adjust the output power of the load in a timely way under low and high frequency navigation.
作者 张涛
出处 《舰船科学技术》 北大核心 2018年第8X期64-66,共3页 Ship Science and Technology
关键词 不确定负荷 船舶微网功率 自适应控制 智能体结构 uncertain load ship microgrid power adaptive control agent structure
  • 相关文献

参考文献4

二级参考文献45

  • 1张政,赵利平,梁义维.基于差动轮系的下肢外骨骼轨迹跟踪控制方法的研究[J].煤炭技术,2015,34(4):305-307. 被引量:4
  • 2王东署,沈大中.一种改进机器人计算力矩控制的神经网络补偿方法[J].高技术通讯,2007,17(5):479-483. 被引量:5
  • 3Kayacan E, Kayacan E, Ramon H, et al. Nonlinear modeling and identification of an autonomous tractor-trailer system [ J]. Computers and Electronics in Agriculture, 2014,106 : 1-10.
  • 4Rahman A, Yahya A. Performance investigation of an advanced tracked prime mover on the low bearing soil [ J ]. Journal of Terramechanics, 2013,50(4) :233-244.
  • 5Keicher R, Seufert H. Automatic guidance for agricultural vehicles in Europe [ J ]. Computers and Electronics in agriculture, 2000,25 ( 1 ) : 169- 194.
  • 6Vilca J, Adouane L, Mezouar Y. A novel safe and flexible control strategy based on target reaching for the navigation of urban vehicles [ J ]. Robotics and Autonomous Systems, 2015,70 : 215-226.
  • 7Carvalho A, Lef'evre S, Schildbach G, et al. Automated driving : the role of forecasts and uncertainty : a control perspective [ J ]. European Journal of Control,2015,24:14-32.
  • 8Butzke J,Daniilidis K, Kushleyev A, et al. The university of pennsylvania MAGIC 2010 multi-robot unmanned vehicle system[ J]. Journal of Field Robotics,2012,29(5) :745-761.
  • 9Chiang K W, Huang Y W. An intelligent navigator for seamless INS/GPS integrated land vehicle navigation applications [ J]. Applied Soft Computing, 2008,8 ( 1 ) : 722-733.
  • 10Mousazadeh H. A technical review on navigation systems of agricultural autonomous off-road vehicles [ J]. Journal of Terramechanics, 2013, 50(3) :211-232.

共引文献152

同被引文献59

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部