期刊文献+

船舶链条机械磨损寿命预测技术 被引量:2

Research on prediction technology for mechanical wear life of ship chain
下载PDF
导出
摘要 为提升链条零件的耐磨性,达到延长机械使用寿命的目的,提出一种新型的船舶链条机械磨损寿命预测模型。通过磨损类型判断、典型磨损规律确定2个步骤,完成船舶链条机械的磨损定义及测量。在此基础上,通过磨损寿命极限确定、剩余使用寿命估算、磨损率计算3个步骤,完成新型模型的搭建,实现船舶链条机械磨损寿命预测技术研究。设计对比实验结果表明,与现有技术手段相比,应用新型船舶链条机械磨损寿命预测模型后,链条零件耐磨性得到明显提升,实现延长机械使用寿命的初衷。 In order to improve the wear resistance of chain parts and prolong the service life of machinery, a new wear life prediction model for ship chain machinery was proposed. The wear definition and measurement of ship chain machinery are completed by two steps: judging the wear type and determining the typical wear law. On this basis, through the determination of wear life limit, residual life estimation, wear rate calculation three steps, complete the construction of the new model,to achieve the ship chain mechanical wear life prediction technology. The experimental results show that the wear resistance of the chain parts is improved obviously and the original purpose of prolonging the service life of the machine is realized by using the new wear life prediction model.
作者 刘安琴
出处 《舰船科学技术》 北大核心 2018年第11X期28-30,共3页 Ship Science and Technology
关键词 链条机械 磨损寿命 磨损类型 典型规律 寿命极限 剩余寿命 磨损率 chain machinery wear life wear type typical law life limit residual life wear rate
  • 相关文献

参考文献4

二级参考文献46

  • 1张锡清.混合三参数威布尔分布的参数估计[J].哈尔滨电工学院学报,1996,19(1):1-7. 被引量:5
  • 2LawlessJF 茆诗松 濮晓龙 刘忠译.寿命数据中的统计模型与方法[M].北京:中国统计出版社,1998.100-134.
  • 3蒋仁言.威布尔模型族[M].北京:科学出版社,1998.22~29.
  • 4何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2011.
  • 5于晓红,张来斌,王朝晖,段礼祥.基于新的威布尔分布参数估计法的设备寿命可靠性分析[J].机械强度,2007,29(6):932-936. 被引量:65
  • 6SOUALHI A, MEDJAHER K, ZERHOUNI N. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 52-62.
  • 7NIZAM M, MOHAMED A, HUSSAIN A. Dynamic voltage collapse prediction in power systems using support vector regression[J]. Expert Systems with Applications, 2010, 37(5): 3730-3736.
  • 8TRAN V T, THOM PHAM H, YANG B S, et al. Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine[J]. Mechanical Systems and Signal Processing, 2012, 32: 320-330.
  • 9TIPPING M E. The relevance vector machine[J]. Advances in Neural Information Processing Systems, 2000, 12.- 652-658.
  • 10TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 1: 211-244.

共引文献109

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部