摘要
传统船舶起重机机械手运行轨迹预测算法中存在准确率低的缺陷,为此设计基于模糊控制的船舶起重机机械手运行轨迹预测算法。采用模糊控制方式对起重机机械手运行轨迹数据进行采集,同时对轨迹数据特征进行提取,为轨迹数据特征的聚类过程提供数据支撑。以轨迹数据特征提取与聚类过程为依据,利用特定系统生成轨迹序列、待预测轨迹以及频繁轨迹序列,实现船舶起重机机械手运行轨迹预测。实验数据表明,设计的船舶起重机机械手运行轨迹预测算法比传统轨迹预测算法的预测准确率高出30%,并且具备极高的有效性。
Traditional ship crane manipulator trajectory prediction algorithm has the defect of low accuracy, so a fuzzy control based trajectory prediction algorithm for ship crane manipulator is designed. Fuzzy control is used to collect trajectory data of crane manipulator and extract trajectory data features to provide data support for the clustering process of trajectory data features. Based on the process of feature extraction and clustering of trajectory data, trajectory sequence, trajectory to be predicted and frequency are generated by a specific system. Track sequence is used to predict the trajectory of ship crane manipulator. The experimental data show that the trajectory prediction algorithm of ship crane manipulator designed is30% more accurate than the traditional trajectory prediction algorithm, and has very high effectiveness.
出处
《舰船科学技术》
北大核心
2018年第11X期208-210,共3页
Ship Science and Technology
基金
江苏省自然科学研究项目(15KJD460001)