期刊文献+

基于TOPSIS的舰船避碰信息决策系统 被引量:1

Design of ship collision avoidance information decision system based on TOPSIS
下载PDF
导出
摘要 传统舰船避碰信息决策系统对于细节信息分析能力差,决策结果难以应用到实际操作中。为了解决这一问题,基于TOPSIS设计了一种新的舰船避碰信息决策系统,硬件选用的采集器为数字采集器,以RESD526芯片作为核心采集芯片,采用微处理器处理决策信息,将处理的结果存储在数据存储器中。软件由分析决策指标、建立决策矩阵、输出决策结果 3步组成。为验证设计系统实际效果,与传统决策系统进行实验对比,结果表明,设计的决策系统能够更准确地分析出舰船内部和外部信息,得到更加有效的决策结果,提高船舶运行的安全性,降低事故发生率。 Traditional ship collision avoidance information decision-making system has poor ability to analyze detailed information, and the decision-making results are difficult to apply to practical operation. In order to solve this problem, a new decision-making system for ship collision avoidance information is designed based on TOPSIS. The collector selected by hardware is a digital collector. The RESD526 chip is used as the core acquisition chip. The decision-making information is processed by microprocessor, and the processed results are stored in the data memory. The software consists of three steps:analysis of decision indicators, establishment of decision matrix and output of decision results. In order to verify the actual effect of the design system, the experimental comparison with the traditional decision-making system shows that the designed decision-making system can more accurately analyze the internal and external information of the ship, obtain more effective decision-making results, improve the safety of ship operation and reduce the incidence of accidents.
作者 王喆 王丽颖 WANG Zhe;WANG Li-ying(Inner Mongolia Vocational College of Chemical Engineering Department of Computer and Information Engineering,Hohhot 010070,China)
出处 《舰船科学技术》 北大核心 2019年第6期76-78,共3页 Ship Science and Technology
基金 2017年内蒙古自治区高等学校科学研究项目(NJZY17451)
关键词 TOPSIS 舰船避碰信息 信息决策 决策系统 TOPSIS ship collision avoidance information information decision-making decision-making system
  • 相关文献

参考文献4

二级参考文献44

  • 1杨玉中,张强,吴立云.基于熵权的TOPSIS供应商选择方法[J].北京理工大学学报,2006,26(1):31-35. 被引量:99
  • 2孔庆福,曾凡明,吴家明,陈国钧.舰艇浮稳性保持与优化计算机辅助决策系统[J].舰船科学技术,2006,28(1):22-26. 被引量:4
  • 3胡启洲,张卫华,于莉.三参数区间数研究及其在决策分析中的应用[J].中国工程科学,2007,9(3):47-51. 被引量:43
  • 4MOORE J,CHAPMAN R. Application of particle swarm to multiobjective optimization[M].Department of Computer Science and Software Engineering,Auburn University,1999.
  • 5KARTHIKEYAN S,ASOKAN P,NICKOLAS S. Solving flexible job-shop scheduling problem using hybrid particle swarm optimisation algorithm and data mining[J].International Journal of Manufacturing Technology and Management,2012,(01):81-103.
  • 6MORADI M H,ABEDINI M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems[J].{H}International Journal of Electrical Power & Energy Systems,2012,(01):66-74.
  • 7REYES-SIERRA M,COELLO C A C. Multi-objective particle swarm optimizers:A survey of the state-of-the-art[J].International Journal of Computational Intelligence Research,2006,(03):287-308.
  • 8PARSOPOULOS K E,VRAHATIS M N. Particle swarm optimization method in multiobjective problems[A].ACM,2002.603-607.
  • 9FIELDSEND J E,UK E Q,SINGH S. A Multi-objective algorithm based upon particle swarm optimisation,an efficient data structure and turbulence[J].2002.
  • 10RAQUEL C R,NAVAL Jr P C. An effective use of crowding distance in multiobjective particle swarm optimization[A].ACM,2005.257-264.

共引文献31

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部