期刊文献+

高噪声背景下舰船指挥舱大词汇量连续语音识别方法

Large vocabulary continuous speech recognition method for ship command cabin in high noise background
下载PDF
导出
摘要 传统的舰船指挥舱大词汇量连续语音识别方法存在着识别错误率高的缺陷,为此提出高噪声背景下舰船指挥舱大词汇量连续语音识别方法研究。对采集的连续语音信号进行预加重和预处理,以预处理后的连续语音信号为基础,采用多通道语音增强方法对连续语音信号进行增强,得到纯净连续语音信号估计,采用CDMFCC方法对纯净连续语音信号特征参数进行提取,通过CDHMM方法实现了高噪声背景下舰船指挥舱大词汇量连续语音的识别。通过实验得到,提出的舰船指挥舱大词汇量连续语音识别方法识别错误率比传统方法低了16%,说明提出的舰船指挥舱大词汇量连续语音识别方法识别性能更好。 The traditional method of large vocabulary continuous speech recognition for naval command cabin has the defect of high recognition error rate.Therefore,a method of large vocabulary continuous speech recognition for naval command cabin in high noise background is proposed.The acquired continuous speech signal is pre-emphasized and pre-processed.Based on the pre-processed continuous speech signal,the multi-channel speech enhancement method is used to enhance the continuous speech signal,and the pure continuous speech signal is estimated.The feature parameters of the pure continuous speech signal are extracted by CDMFCC method,and the command cabin of naval ships under high noise background is realized by CDHMM method.Large vocabulary continuous speech recognition.The experimental results show that the recognition error rate of the proposed method is 16%lower than that of the traditional method,which shows that the proposed method has better recognition performance.
作者 刘雪燕 LIU Xue-yan(Department of Information Engineering,Zhongshan Torch Polytechnic,Zhongshan 528436,China)
出处 《舰船科学技术》 北大核心 2019年第8期157-159,共3页 Ship Science and Technology
基金 中山市社会公益科研资助项目(2016B2167)
关键词 噪声 背景 舰船 词汇量 连续语音 识别 noise background ship vocabulary continuous speech recognition
  • 相关文献

参考文献4

二级参考文献46

  • 1Torres-Carrasquillo P A, Singer E, Kohler M A., et al. Approachesto language identification using gaussian mixture models andshifted delta cepstral features [C]//Proc ICSLP. 2002: 33-36.
  • 2Mohamed A, Dahl G, Hinton G. Acoustic modeling using deepbelief networks [J]. IEEE Transactions on Audio, Speech, andLanguage Processing, 2012, 20(1): 14-22.
  • 3Dahl G E, Sainath T N, Hinton G E. Improving deep neural networksfor lvcsr using rectified linear units and dropout[C]//ICASSP,2013.
  • 4Hinton G, Srivastava N, Krizhevsky A, et al. Improving neuralnetworks by preventing co-adaptation of feature detectors[J]. TheComputing Research Repository, abs/1207.0580, 2012.
  • 5Vinod Nair, Geoffrey G, Hinton. rectified linear units improverestricted boltzmann machines[C]//ICML-10.2010.
  • 6Zeiler M D, Ranzato M, Monga R., et al. On Rectified LinearUnits for Speech Processing[C]//ICASSP, 2013.
  • 7Hinton G, Salakhutdinov R.. Reducing the dimensionality of datawith neural networks [J]. Science. 2006, 313(5786): 504-507.
  • 8Yu D, Seltzer M. Improved bottleneck features using pre-traineddeep neural networks[C]//Proceedings of the International SpeechCommunication Association, 2011, Florence, Italy: 237-240.
  • 9Yu D, Deng L, Dahl G E. Roles of pre training and fine-tuning incontext-dependent dbn-hmms for real-world speech recognition[C]//NIPS 2010 Workshop on Deep Learning for Speech Recognitionand Related Applications, 2009.
  • 10Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]//Proceedings of the Fourteenth International Conferenceon Artificial Intelligence and Statistics, 2011.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部