期刊文献+

基于大数据挖掘模型的船舶破碎尾迹智能跟踪方法

Intelligent tracking method of ship’s broken wake based on big data mining model
下载PDF
导出
摘要 为了解决传统船舶破碎尾迹跟踪方法跟踪轨迹点离散性过大的问题,设计基于大数据挖掘模型,提出一种新的船舶破碎尾迹智能跟踪方法。采用GIBS抽样算法作为数据挖掘模型的内核,将传统单一的马尔科夫数据链转化为多链,建立一种多链结构的数据挖掘挖掘模型,进行船舶当前尾迹数据挖掘,利用尾迹状态方程和尾迹测量方程,将尾迹数据图像化,确定尾迹实际像素并进行补偿处理,对处理后的图像进行回波特征转化,根据图像像素的回波特征值,评判像素点是否属于船舶尾迹,从而实现当前船舶尾迹跟踪。实验数据表明,该方法输出的船舶尾迹跟踪结果,其轨迹回波有效间距提高了32%,补偿间距提高了29%,可以有效降低轨迹离散。 in order to solve the problem of excessively large discretization of tracking track points in the traditional tracking method of ship’s broken wake,a new intelligent tracking method of ship’s broken wake was proposed based on the big data mining model.Using GIBS sampling algorithm,as the kernel of data mining model,the traditional single markov chain for the chain data,set up more than a chain structure model of data mining,mining ship wake current data mining,using wake wake measuring equation and state equation,the trail data visualization,and compensate for trail actual pixel processing,echo characteristics of the processed image transformation,according to the echo characteristics of image pixel value,judging whether the pixel belongs to ship wake,so as to realize the current trail tracking of the ship.Experimental data show that the tracking results of ship wake output by this method can reduce the echo interval by 32%and the compensating interval by 29%,which can effectively reduce the track dispersion.
作者 冯健 FENG Jian(Sichuan Post and Telecommunication College,Chengdu 610067,China)
出处 《舰船科学技术》 北大核心 2019年第10期37-39,共3页 Ship Science and Technology
基金 全国工业和信息化职业教育教学指导委员会2018-2019年度科研资助课题(GS-2019-07-15)
关键词 大数据 破碎尾迹 状态方程 回波特征 big data broken wake equation of state echo characteristics
  • 相关文献

参考文献4

二级参考文献39

  • 1胡泽,廖闻剑,彭艳兵.WebService技术研究及应用[J].硅谷,2009,2(5). 被引量:55
  • 2栾丽华,吉根林.决策树分类技术研究[J].计算机工程,2004,30(9):94-96. 被引量:115
  • 3郭创新,朱传柏,曹一家,吴欣.电力系统故障诊断的研究现状与发展趋势[J].电力系统自动化,2006,30(8):98-103. 被引量:134
  • 4杨文志. 云计算技术指导南[M]. 北京: 北京工业出版社,2010.
  • 5G E P Box, G M Jenkins, G C Reinsel. Time series analysis: fore- casting and control[ M]. Wiley, 2011.
  • 6G E P Box, D A Pierce. Distribution of residual autocorrelations in autoregressive- integrated moving average time series models [ J ]. Journal of the American Statistical Association, 1970,65 ( 332 ) : 1509 - 1526.
  • 7W R Christiaanse. Short - term load forecasting using general expo- nential smoothing[ J]. Power Apparatus and Systems, IEEE Trans- actions on, 1971, ( 2 ) :900 - 911.
  • 8G. B Huang, Q Y Zhu and C KSiew. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks [ C ]. 2004 International Joint Conference on Neural Networks ( IJCNN' 2004), (Budapest, Hungary), July 25-29, 2004.
  • 9G B Huang, X Ding, H Zhou. Optimization method based extreme learning machine for classification[ J]. Neurocomputing, 2010,74 (1) :155 -163.
  • 10C Cheng, W P Tay, G B Huang. Extreme learning machines for intrusion detection [ C ]. Neural Networks ( IJCNN), The 2012 In- ternational Joint Conference on. IEEE, 2012 : 1 - 8.

共引文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部