期刊文献+

船舶柴油机机械磨损故障诊断的模式识别 被引量:3

Pattern recognition for fault diagnosis of marine diesel engine mechanical wear
下载PDF
导出
摘要 船舶柴油机在工作过程中,经常会发生机械磨损故障,给船舶柴油机的工作稳定性带来困扰,针对当前船舶柴油机机械磨损故障存在的诊断准确率低、机械磨损故障诊断时间复杂度高等缺陷,设计了一种船舶柴油机机械磨损故障诊断的模式识别方法。首先分析当前船舶柴油机机械磨损故障的原理,并提取船舶柴油机机械磨损故障诊断特征,然后采用层次分析法分析确定每一个船舶柴油机机械磨损故障特征的权值,并根据RBF神经网络确定船舶柴油机机械磨损故障诊断的模式识别模型,最后进行船舶柴油机机械磨损故障诊断的验证性测试,分析本文方法的船舶柴油机机械磨损故障效果。本文方法的船舶柴油机机械磨损故障诊断率超过了90%,不仅远远高于对比方法的船舶柴油机机械磨损故障诊断率,而且船舶柴油机机械磨损故障效率得到有效的改善,具有很好的推广前景。 Marine diesel engine often suffers from mechanical wear faults during its working process,which brings troubles to the working stability of marine diesel engine.Aiming at the defects of low diagnostic accuracy and high time complexity of mechanical wear fault diagnosis of marine diesel engine,a pattern recognition method for mechanical wear fault diagnosis of marine diesel engine is designed.Firstly,the principle of the current marine diesel engine mechanical wear fault is analyzed,and the fault diagnosis features of marine diesel engine mechanical wear are extracted.Then,the weights of each marine diesel engine mechanical wear fault feature are determined by analytic hierarchy process(AHP).Based on RBF neural network,the pattern recognition model of marine diesel engine mechanical wear fault is determined.Finally,the marine diesel engine mechanical wear fault is analyzed.Finally,the validation test of the mechanical wear fault of marine diesel engine is carried out,and the effect of this method on the mechanical wear fault of marine diesel engine is analyzed.
作者 喻步贤 刘俊 YU Bu-xian;LIU Jun(Huaian Vocational College of Information Technology,Huaian223003,China;Nanjing University of Science and Technology,Nanjing210094,China)
出处 《舰船科学技术》 北大核心 2019年第10期70-72,共3页 Ship Science and Technology
关键词 船舶柴油机 机械磨损 层次分析法 特征权值 marine diesel engine mechanical wear analytic hierarchy process eigenvalue
  • 相关文献

参考文献3

二级参考文献36

  • 1唐发明,王仲东,陈绵云.一种新的二叉树多类支持向量机算法[J].计算机工程与应用,2005,41(7):24-26. 被引量:50
  • 2唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 3刘占生,夏松波.人工神经网络在汽轮发电机组故障诊断中的应用[J].汽轮机技术,1995,37(1):18-20. 被引量:5
  • 4程军圣,于德介,杨宇.基于EMD和SVM的滚动轴承故障诊断方法[J].航空动力学报,2006,21(3):575-580. 被引量:32
  • 5Specht D F. Probabilistic neural networks [J]. Neural Networks, 1990,1(3): 109~118.
  • 6Raghu P P, Yegnanarayana B. Supervised texture classification using a probabilistic neural network and constraint satisfaction model [J]. IEEE Trans. On Neural Networks, 1998, 9(3): 516 ~ 522.
  • 7RichardO Duda PeterE Hart DavidG Stork著 李宏东 姚天翔 译.模式分类[M].北京:机械工业出版社,2003(9)..
  • 8何正嘉,袁静,訾艳阳.机械故障诊断的内积变换原理与应用[M].北京:科学出版社,2012: 47-60.
  • 9Vapnik V. The nature of statistical learning theory [M]. New York: Springer, 1995.
  • 10Knerr S, Personnaz L, Dreyfus G. Single-layer learn- ing revisited., a stepwise procedure for building and training a neural network[A]. In: Fogelman-Souli F, Herault J ed. Neurocomputing: Algorithms, Archi tectures and Applications[C]. Springer, Berlin, 1990: 41--50.

共引文献79

同被引文献54

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部