期刊文献+

船舶通信网络垃圾邮件的检测分析 被引量:1

Detection and analysis of spam in ship communication network
下载PDF
导出
摘要 垃圾邮件占用大量的船舶通信网络通信资源,而且危及船舶通信网络安全,针对当前船舶通信网络垃圾邮件检测率低,检测时间复杂度高的难题,设计基于数据挖掘的船舶通信网络垃圾邮件检测方法。首先对船舶通信网络垃圾邮件检测原理进行分析,提取船舶通信网络垃圾邮件检测特征,然后采用数据挖掘方法对船舶通信网络垃圾邮件检测特征进行分析,建立船舶通信网络垃圾邮件检测的分类器,最后进行船舶通信网络垃圾邮件检测实证分析,分析结果表明本文方法的船舶通信网络垃圾邮件检测正确率超过了90%,远远高于船舶通信网络垃圾邮件检测的实际要求,降低了船舶通信网络垃圾邮件检测时间复杂度,是一种有效的船舶通信网络垃圾邮件检测手段。 Spam takes up a lot of communication resources of ship communication network,and it is dangerous to the safety of ship communication network.In view of the low detection rate and high detection time complexity of ship communication network,a spam detection method based on data mining is designed to improve the detection effect of ship communication network spam.Firstly,the principle of spam detection in ship communication network is analyzed,and the characteristics of spam detection in ship communication network are extracted.Secondly,the spam detection features in ship communication network are analyzed by data mining method,and the classifier of spam detection in ship communication network is established.Finally,the empirical analysis of spam detection in ship communication network is carried out.The accuracy rate of spam detection in ship communication network is over 90%,which is much higher than the actual requirement of spam detection in ship communication network.It reduces the time of spam detection in ship communication network and is an effective means of spam detection in ship communication network.
作者 曾玉生 ZENG Yu-sheng(Neijiang Vocational and Technical College,Neijiang 641100,China)
出处 《舰船科学技术》 北大核心 2019年第10期160-162,共3页 Ship Science and Technology
关键词 船舶通信网络 垃圾邮件 检测分类器 特征向量 ship communication network spam detection classifier feature eigenvector
  • 相关文献

参考文献3

二级参考文献41

  • 1李渝勤,孙丽华.基于规则的自动分类在文本分类中的应用[J].中文信息学报,2004,18(4):9-14. 被引量:20
  • 2史忠植.高级人工智能[M].北京:科学出版社,1997..
  • 3边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 4M. DeSouza, J. Fitzgerald, C. Kempand G. Truong, A Decision Tree based Spam Filtering Agent[EB] . from http:∥www. cs. mu. oz. au/481/2001- projects/gntr/index. html, 2001.
  • 5N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm[J]. Machine Learning, 2(4) :285- 318, 1988[J].
  • 6R. Krishnamurthy and C. Orasan, A corpus-based investigation of junk emails[A]. In: Proceedings of Language Resources and Evaluation Conference (LREC 2002)[C]. Las Palmas de Gran Canaria, Spain, pp. 1773- 1780,May 2002.
  • 7M. Sahami, S. Dumais, D. Heckerman and E. Horvitz, A Bayesian approach to filtering junk e-mail[A]. In:Proc. of AAAI Workshop on Learning for Text Categorization[C]. pp. 55-62, 1998.
  • 8W. Cohen, Fast effective rule induction[A]. In: Machine Learning Proceedings of the Twelfth International Conference[C]. Lake Taho, California, Mongan Kanfmann, pp. 115-123, 1995.
  • 9W. Cohen, Learning rules that classify email[A]. In: Proceedings of the AAAI spring symposium of Machine Learning in Information Access, Palo Alto[C]. California, pp. 18 - 25. 1996.
  • 10X. Carreras and L. Marquez, Boosting Trees for Anti-Spam Email Filtering[A]. In: Proceedings of Euro Conference Recent Advances in NLP (RANLP-2001)[C]. pp. 58-64, Sep. 2001.

共引文献144

同被引文献26

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部