摘要
传统的数据挖掘模型会受周围环境因素的影响,无法精准挖掘海上船舶运行数据,为此构建基于物联网环境的海上AIS大数据挖掘模型。在物联网平台将船舶运行轨迹、停泊轨迹和位置信息存入数据库中进行AIS数据预处理,为减小环境因素的波动,设置船舶AIS数据传输条件,利用聚类算法进行过滤处理,实现海上AIS大数据挖掘模型的构建。在实际测试中为考察2种数据挖掘模型的效果,分别在人为干扰环境下和同频干扰的环境下进行对比实验,由对比结果可知,所提方法可以精准的挖掘海上船舶AIS数据。
Traditional data mining model will be affected by the surrounding environmental factors,so it is impossible to accurately mine the operational data of ships on the sea.Therefore,a large data mining model of AIS on the sea based on the Internet of Things environment is constructed.In the Internet of Things platform,ship trajectory,berth trajectory and location information are stored in the database for AIS data preprocessing.In order to reduce the fluctuation of environmental factors,the data transmission conditions of ship AIS are set up,and the clustering algorithm is used to filter the data,so as to realize the construction of large data mining model of marine AIS.In order to investigate the effect of the two data mining models in the actual test,the comparative experiments were carried out in the environment of man-made interference and the same frequency interference respectively.The results show that the proposed method can accurately mine the AIS data of ships at sea.
作者
周鑫
ZHOU Xin(Xinjiang Shihezi Vocational Technical College,Information Engineering College,Shihezi 832000,China)
出处
《舰船科学技术》
北大核心
2019年第16期196-198,共3页
Ship Science and Technology
关键词
数据挖掘
数据预处理
动态数据
运行轨迹
数据库
干扰信号
data mining
data preprocessing
dynamic data
running trajectory
database
interference signal