期刊文献+

基于舵机能力验证要求的舵系优化设计 被引量:1

Optimization design of rudder unit based on requirements of steering gear capacity verification
下载PDF
导出
摘要 在IACS统一解释文件UI SC246 Rev.1提出根据非满载试航船舶操舵试验结果对满载航行状态船舶舵机能力进行验证的换算方法之后,相当一部分采用半悬挂舵的船舶出现了无法按该方法通过舵机能力验证的状况。为解决上述问题,本文基于常规船型半悬挂舵的3种典型布置方案,通过设计相同的舵面积和不同的几何外形,得到3个计算模型,利用计算流体力学(CFD)方法对各方案的全浸没和部分浸没状态分别进行计算分析。计算结果表明,舵叶平衡比对舵杆水动力扭矩存在直接影响,适当大的舵叶平衡比设计可以显著降低舵叶全浸没状态和部分浸没状态的舵杆水动力扭矩。基于此结论,对某型未能通过换算验证的船舶舵系进行优化设计,适当增大了舵叶平衡比。后续船试航结果表明,舵机能力验证满足UI SC246 Rev.1的要求,确认了CFD计算结论的正确性,为以降低舵杆水动力扭矩为目标的舵系优化设计提供了理论和实践依据。 In the IACS Unified Interpretation Document UI SC246 Rev.1,the verification of the steering gear capacity with the ship at the full load condition is proposed,which based on the results of the steering test with the vessel not at the deepest sea going draught.A considerable number of ships using the semi-balanced rudder appeared to be unable to comply with the requirements.In order to solve this problem,three typical layout schemes of the conventional semi-balanced rudder are obtained by designing the different geometrical shapes with the same rudder area,and the computational fluid dynamic(CFD)method is used for each scheme.Full immersion and partial immersion rudder are calculated and analyzed separately.The calculation results show that the balance ratio of the rudder as a direct effect on the hydrodynamic torque of the rudder stock.The appropriate rudder blade balance ratio can significantly reduce the hydrodynamic torque of the rudder stock when the rudder blade at full immersion state and partial immersion state.Based on conclusions above,an optimized design for rudder unit which failed to meet the requirements is performed,and the rudder blade balance ratio is appropriately increased.The trial result of subsequent sister ship shows that the steering gear capability verification meets the requirement of UI SC246 Rev.1,which confirmed the correctness of the CFD calculation conclusion,and provided theoretical and practical basis to the rudder system optimization design aimed at reducing the rudder hydrodynamic torque.
作者 晋文菊 顾剑刚 李邦华 JIN Wen-ju;GU Jian-gang;LI Bang-hua(Shanghai Merchant Ship Design and Research Institute,Shanghai 201203,China)
出处 《舰船科学技术》 北大核心 2019年第17期95-99,共5页 Ship Science and Technology
基金 工信部高技术船舶科研项目(工信部联装[2016]547号)
关键词 舵系 舵机 计算流体力学 舵杆扭矩 平衡比 rudder unit steering gear CFD rudder stock torque balance ratio
  • 相关文献

参考文献2

二级参考文献12

  • 1Montgomery D C.实验设计与分析[M].北京:人民邮电出版社,2009.
  • 2Campana E F, Peri D, Pinto A, Tahara Y, Stem F. Shape optimization in ship hydrodynamics using computational fluid dy- namics[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 196: 634-651.
  • 3Peri D, Campana E F. Multidisciplinary design optimization of a naval surface combatant[J]. Journal of Ship Research, 2003, 41(1): 1-12.
  • 4Tahara Y, Peri D, Campana E F, Stern F. Computational fluid dynamics-Based multi-objective optimization of a surface combatant[J]. Marine Science and Technology, 2008, 13(2): 95-116.
  • 5Tahara Y, Peri D. Single and Multi-objective design optimization of a fast multi-hull ship numerical and experimental resuits[C]//27th Symposium on Naval Hydrodynamics. Seoul, Korea, 2008: 25-33.
  • 6梁军,许劲松,谢杰等.基于设计空间探索的型线自动优化[C].杭州:中国造船工程学会会议论文集,2008:50-63.
  • 7Srinivas N, Deb K. Multi-objective function optimization using non-dominated sorting genetic algorithms[J]. Evolutionary Computation, 1995, 2(3): 221-248.
  • 8Deb K, Agrawal S, Pratap A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[C]//Proc of the Parallel Problem Solving from Nature VI Conf. Paris, 2000: 849-858.
  • 9吉贝尔·德忙热,让皮尔·甫热著.曲线与曲面的数学[M].王向东,译.北京:商务印书馆,2000.
  • 10温建华,朱自强,吴宗成,陈泽民.基于N-S方程串并行计算的机翼优化设计[J].北京航空航天大学学报,2008,34(2):127-130. 被引量:7

共引文献15

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部