期刊文献+

Targeting histones for degradation in cancer cells as a novel strategy in cancer treatment 被引量:2

Targeting histones for degradation in cancer cells as a novel strategy in cancer treatment
原文传递
导出
摘要 The anticancer therapies with the joint treatment of a histone deacetylase(HDAC) inhibitor and a DNA-damaging approach are actively under clinical investigations, but the underlying mechanism is unclear. Histone homeostasis is critical to genome stability, transcriptional accuracy, DNA repair process, senescence, and survival. We have previously demonstrated that the HDAC inhibitor, trichostatin A(TSA), could promote the degradation of the core histones induced by γ-radiation or the DNAalkylating agent methyl methanesulfonate(MMS) in non-cancer cells, including mouse spermatocyte and embryonic fibroblast cell lines. In this study, we found that the joint treatment by TSA and MMS induced the death of the cultured cancer cells with an additive effect, but induced degradation of the core histones synergistically in these cells. We then analyzed various combinations of other HDAC inhibitors, including suberoylanilide hydroxamic acid and valproate sodium, with MMS or other DNAdamaging agents, including etoposide and camptothecin. Most of these combined treatments induced cell death additively, but all the tested combinations induced degradation of the core histones synergistically. Meanwhile, we showed that cell cycle arrest might not be a primary consequence for the joint treatment of TSA and MMS. Given that clinic treatments of cancers jointly with an HDAC inhibitor and a DNA-damaging approach often show synergistic effects, histone degradation might more accurately underlie the synergistic effects of these joint treatments in clinic applications than other parameters, such as cell death and cell cycle arrest. Thus, our studies might suggest that the degradation of the core histones can serve as a new target for the development of cancer therapies. The anticancer therapies with the joint treatment of a histone deacetylase(HDAC) inhibitor and a DNA-damaging approach are actively under clinical investigations, but the underlying mechanism is unclear. Histone homeostasis is critical to genome stability, transcriptional accuracy, DNA repair process, senescence, and survival. We have previously demonstrated that the HDAC inhibitor, trichostatin A(TSA), could promote the degradation of the core histones induced by γ-radiation or the DNAalkylating agent methyl methanesulfonate(MMS) in non-cancer cells, including mouse spermatocyte and embryonic fibroblast cell lines. In this study, we found that the joint treatment by TSA and MMS induced the death of the cultured cancer cells with an additive effect, but induced degradation of the core histones synergistically in these cells. We then analyzed various combinations of other HDAC inhibitors, including suberoylanilide hydroxamic acid and valproate sodium, with MMS or other DNAdamaging agents, including etoposide and camptothecin. Most of these combined treatments induced cell death additively, but all the tested combinations induced degradation of the core histones synergistically. Meanwhile, we showed that cell cycle arrest might not be a primary consequence for the joint treatment of TSA and MMS. Given that clinic treatments of cancers jointly with an HDAC inhibitor and a DNA-damaging approach often show synergistic effects, histone degradation might more accurately underlie the synergistic effects of these joint treatments in clinic applications than other parameters, such as cell death and cell cycle arrest. Thus, our studies might suggest that the degradation of the core histones can serve as a new target for the development of cancer therapies.
出处 《Science China(Life Sciences)》 SCIE CAS CSCD 2019年第8期1078-1086,共9页 中国科学(生命科学英文版)
基金 supported by the National Natural Science Foundation of China (31530014, 91319303 & 31600626)
关键词 HDAC HISTONE DEACETYLASE inhibitor DNA damage ANTICANCER agent HISTONE DEGRADATION HDAC histone deacetylase inhibitor DNA damage anticancer agent histone degradation
  • 相关文献

同被引文献15

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部