期刊文献+

空气喷射辅助少量润滑对航空铝合金7050-T7451铣削力的影响 被引量:2

Effect of Air Jet Assisted Little Quantity Lubrication on Cutting Force in Aviation Aluminum 7050-T7451 Milling Process
下载PDF
导出
摘要 为了提高少量润滑的冷却润滑效果,提出了空气喷射辅助少量润滑的方法,并利用建立的空气喷射辅助少量润滑系统对航空铝合金7050-T7451进行铣削实验。通过采集切削力信号对干切削、不同切削液流量的空气喷射辅助少量润滑切削和湿式切削进行比较研究。结果表明:干切削条件下的切削力大于空气喷射辅助少量润滑的切削力,且随着切削液流量的增大,气液两相冷却润滑介质的润滑能力增强,导致切削力呈减小趋势;空气喷射辅助少量润滑与湿式冷却润滑两种条件下的切削力相比,总体来说前者小于后者,这一现象表明空气喷射辅助少量润滑的润滑效果优于湿式冷却润滑,但切削液的使用量仅为后者的3%。 In order to improve cooling and lubrication effect of little quantity lubrication,air jet assisted little quantity lubrication(AJLQL)was put forward and milling experiment of aviation aluminum alloy 7050-T7451 was carried out by using AJLQL system.A comparative study of dry cutting,AJLQL cutting and flood lubrication cutting was conducted based on cutting force signals.The results show that the cutting force under dry cutting condition is larger than that of AJLQL cutting.With the increase of cutting fluid flow rate,the lubricating ability of air-liquid two phase cooling-lubrication medium increases,which results in the decrease of cutting force.Comparison of cutting force between AJLQL cutting and flood lubrication cutting shows that the cutting force of AJLQL cutting is smaller than that of flood lubrication cutting,which indicates that the lubrication effect of AJLQL is better than that of flood lubrication,but the cutting fluid usage is only 3%of the latter.
作者 仲为武 ZHONG Weiwu(College of Mechanical and Electrical Engineering,Shandong Yingcai University,Jinan Shandong 250104,China)
出处 《机床与液压》 北大核心 2019年第7期35-38,共4页 Machine Tool & Hydraulics
基金 山东省自然科学基金资助项目(ZR2015EL030)
关键词 切削液 空气喷射 切削力 少量润滑 Cutting fluid Air jet Cutting force Little quantity lubrication
  • 相关文献

参考文献1

二级参考文献13

  • 1修世超,李长河,蔡光起.磨削加工表面粗糙度理论模型修正方法[J].东北大学学报(自然科学版),2005,26(8):770-773. 被引量:18
  • 2葛培琪,王珉,张磊,栾芝云.基于改进BP网络的磨削加工数值仿真研究[J].工具技术,2006,40(4):28-31. 被引量:2
  • 3邓朝晖,程文涛.基于神经网络的成形磨削表面粗糙度的研究[J].机械制造,2006,44(7):39-40. 被引量:13
  • 4Nguyen T A, Butler D L. Simulation of precision grinding process, part 1 : generation of the grinding wheel surface [ J ]. International Journal of Machine Tools and Manufacture, 2005,45 ( 11 ) : 1321 - 1328.
  • 5Xipeng X U, Malkin S. Comparison of methods to measure grinding temperatures[ J]. Journal of Manufacturing Science and Engineering,2001 ( 123 ) : 191 , 195.
  • 6Jin T, Stephenson D J. A study of the convection heat trans- fer coefficients of grinding fluids [ J ]. CIRP Annals-Manu- facturing Technology, 2008 ( 57 ) : 367 - 370.
  • 7Sadeghi M H, Haddad M J, Tawakoli T, et al. Minimal quan- tity lubrication-MQL in grinding of Ti-6Al-4V titanium alloy [ J ]. Int. J. Adv. Manuf. Technol. ,2009 (44) :487 -500.
  • 8Weinert K, Inasaki I, Sutherland J W, et al. Dry Machining and Minimum Quantity Lubrication [ J ]. Annals of the CIRP,2004,53 (2) :323 - 349.
  • 9Hecker R L, Liang S Y. Predictive modeling of surface roughness in grinding[J]. International Journal of Machine Tools and Manufacture, 2003,43 (8) :755 - 761.
  • 10Ali Y M, Zhang L. A methodology for fuzzy modeling of en- gineering systems [ J]. Fuzzy Sets and Systems, 2011 (118) :181 -197.

共引文献1

同被引文献27

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部