期刊文献+

胶体超级电容电池 被引量:4

Colloidal supercapattery
原文传递
导出
摘要 兼具高功率密度与高能量密度的储电技术是电化学储能领域的终极目标,寻找新型储电体系成为实现这一目标的重要策略.超级电容电池融合二次电池和超级电容器的优势,实现高功率密度和高能量密度在同一时空的统一.作为关键电极材料,超级电容电池型电极材料具有快速的电子和离子传输通道,在热力学、动力学允许条件下实现最大化利用氧化还原活性阳离子.目前开发的胶体离子超级电容电池能量密度可以达到350 Wh/kg,功率密度达到2 kW/kg.超级电容电池储电设备特别适合应用于脉冲电源、电磁弹射、能量回收、启停电源等领域. Electrical storage technology with both high power density and high energy density is the ultimate goal in the field of electrochemical energy storage. Finding novel electrical storage system that combines the advantages of supercapacitor and battery has become the key strategy to achieve this ultimate goal. The supercapattery combines the advantages of battery and the supercapacitor to achieve unification of high power density and high energy density in the same time and space. Served as key electrode materials,supercapattery-type electrode materials possess fast electron and ion transfer channel, which can maximize the utilization of the redox-active cation under the permissible conditions of thermodynamics and dynamics. Developed supercapattery can show energy density of 350 Wh/kg and power density of 2 kW/kg. Supercapattery device can be applied in pulse power supply, electromagnetic ejection, energy recovery, start and stop power and so on.
作者 陈昆峰 薛冬峰 CHEN KunFeng;XUE DongFeng(State Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China)
出处 《中国科学:技术科学》 EI CSCD 北大核心 2019年第2期175-181,共7页 Scientia Sinica(Technologica)
基金 国家自然科学基金(批准号:21601176 21521092) 吉林省科技发展计划(编号:20160520002JH) 吉林省青年人才托举工程(编号:181901)资助项目
关键词 电化学储能 电极材料 超级电容器 电池 胶体 electrochemical energy storage electrode materials supercapacitor battery colloid
  • 相关文献

参考文献5

二级参考文献104

  • 1天津大学无机化学教研室.无机化学.北京:高等教育出版社,2002:146.
  • 2Reddy M V, Subba Rao G V, Chowdari B V R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013, 113: 5364-5457.
  • 3Liu F, Song S, Xue D, et al. Folded Structured graphene paper for high performance electrode materials. Adv Mater, 2012, 24:1089-1094.
  • 4Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed, 2008, 47:2930-2946.
  • 5Liu J, Xia H, Xue D, et al. Double-shelled nanocapsules of V2Os-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc, 2009, 131:12086-12087.
  • 6Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol, 2008, 3:31-35.
  • 7Ji X, Song X, Li J, et al. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J Am Chem Soc, 2007, 129: 13939-13948.
  • 8Osherov A, Zhu C, Panzer M J. Role of solution chemistry in determining the morphology and photoconductivity of electrodeposited cuprous oxide films. J Chem Mater, 2013, 25:692-698.
  • 9Xie R, Li Z, Peng X. Nucleation Kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals. J Am Chem Soc, 2009, 131:15457-15466.
  • 10Yan C, Xue D. A modified electroless deposition route to dendritic Cu metal nanostructures. Cryst Growth Des, 2008, 8:1849-1854.

共引文献22

同被引文献26

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部