期刊文献+

一种基于动态时间弯曲的数据流子序列匹配系统 被引量:2

A Subsequence Matching System Over Data Stream Under Dynamic Time Warping
下载PDF
导出
摘要 随着工业生产中数据源的不断增加,人们对数据流的处理需求日益增大.其中,一个基本需求是基于距离度量方法的子序列匹配.由于动态时间弯曲距离(dynamic time warping,DTW)具有较高的度量精度,将其应用于子序列匹配问题是非常有价值的.但是,DTW具有较高的计算复杂度,这极大地限制了它在数据流上的应用.针对该问题,设计了一种高效的基于DTW的数据流子序列匹配系统.首先对数据流进行高效的适应性分段,然后对每一子段进行切比雪夫因式分解.不同于在原始数据空间的DTW计算,系统将在低维的切比雪夫特征空间计算DTW距离,因此,系统具有较高的计算效率.另外,提出了一种高效的在线匹配算法,可实现DTW在数据流上的增量式计算,进一步提高了系统的执行效率. With the increment of data sources,there are many challenging demands to deal with the data stream.The most fundamental one is the subsequence matching based on the distance measures.With the high measure precision,the dynamic time warping(DTW)distance has been proven valuable to be used for the subsequence matching.Unfortunately,the high computational complexity of DTW largely limits its application to the data stream.To address this problem,we propose a novel piecewise approximation based DTW and design an efficient subsequence matching system over data stream under DTW.Concretely,we first adaptively segment the data stream,and then factorize each segment with the Chebyshev polynomials.Rather than on the raw data,DTW is computed in the lowdimensional Chebyshev space. Moreover,we propose an efficient online matching algorithm to support the incremental DTW computation over data stream,which can further improve the efficiency of the system.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第S1期112-117,共6页 Journal of Computer Research and Development
基金 "核高基"国家科技重大专项课题(2010ZX01042-002-003-001) 中国工程科技知识中心建设项目(CKCEST-2014-1-5) 国家自然科学基金项目(61332017)
关键词 数据流 子序列匹配 动态时间弯曲 切比雪夫近似 相似性度量 data stream subsequence matching dynamic time warping(DTW) Chebyshev approximation similarity measure
  • 相关文献

参考文献3

二级参考文献38

  • 1肖辉,胡运发.基于分段时间弯曲距离的时间序列挖掘[J].计算机研究与发展,2005,42(1):72-78. 被引量:59
  • 2Sakurai Y, Faloutsos C, Yamamuro M. Stream monitoring under the time warping distance [C] //Proc of the IEEE 23rd Int Conf on Data Engineering. Washington, DC: IEEE Computer Society, 2007:1046-1055.
  • 3Athitsos V, Papapetrou P, Potamias M, et al. Approximate embedding-based subsequencc matching of time series [C]// Proc of the ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2008:365-378.
  • 4Shih M, Hsiao S, Chen F. The association of stock index among the market of China, US and Japan[C]//Proc of the Int Conf on Convergence Information Technology. Washington, DC: IEEE Computer Society, 2007:2276-2285.
  • 5Dagon D, Zou C, Lee W. Modeling botnet propagation using time zones [C/OL]//Proc of the 13th Network arid Distributed System Security Symposium. 2006 [2009-01- 061. http://www.isoc. org/isoc/conferences/ndss/06/proceedings/ papers/modeling_botnet_propagation. pdf.
  • 6Aggarwal C, Han J, Wang J, et al. A framework for high dimensional projected clustering of data stream [C] //Proc of the 30th Int Conf on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann, 2004:852-863.
  • 7Berndt D J, Clifford J. Using dynamic time warping to find patterns in time series [C]//Proc of the AAAI Workshop on Knowledge Discovery in Databases. Menlo Park, CA: AAAI, 1994:359-370.
  • 8Agarwal S, Agrawal R, Deshpande P M, et al. On the computation of multidimensional aggregates [C] //Proc of the 30th Int Conf on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann, 1996:506-521.
  • 9Estan C, Savage S, Varghese G. Automatically inferring patterns of resource consumption in network traffic [C] // Proc of the ACM SIGCOMM Data Communications Festival. New York: ACM, 2003:137-148.
  • 10Cheng W, Xu X, Jia Y, et al. Network Dynamic Risk Assessment Based on the Threat Stream Analysis [C] //Proc of the 9th Int Conf on Web Age Information Management. Washington, DC: IEEE Computer Society, 2008: 532-538.

共引文献14

同被引文献25

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部