期刊文献+

有界线性算子的n-次数值域 被引量:5

On the n-numerical range of a bounded inear operator
下载PDF
导出
摘要 研究Hilbert空间H上的有界线性算子的n-次数值域的性质,n-次数值域与算子谱及n-次数值域之间的关系.将算子的二次数值域推广到n-次数值域,发现n-次数值域具有一系列与二次数值域类似的性质;在一定条件下,n-次数值域包含在二次数值域中.当空间是有限维时,算子的n-次数值域就等于算子的谱. The nnumerical range is presented.The main results are a spectral inclusion theorem and the relation amogng nnumerical ranges. During the course of developing the quadratic numerical range into nnumerical range,the nnumerical range has the similur properties with the quadratic numerical and is contained in the quadratic numerical under condition.Especially,the nnumerical range equals the spectrum of operator when the dimension of the space is finite.
作者 任芳国
出处 《纺织高校基础科学学报》 CAS 2002年第4期287-290,309,共5页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(19771056)
关键词 有界线性算子 n-次数值域 算子谱 HILBERT空间 Hilbert space spectrum block operator matrix n-numerical range
  • 相关文献

参考文献12

  • 1TOEPLITZ O.Das algebraische Analogon Zu einem satze Von FeJer[J].Math Zeit, 1918,(2):187-197.
  • 2HAUSDORFF F.Der Wertvorrat einer Bilinearform[J].Math Zeit,1919,3:314-316.
  • 3DONOGHUE W F.On the numerical range of a bounded operator[J].Michigan Math J,1957,4:261-263.
  • 4WILLIAMS J P.CRIMMINS T.On the numerical radius of a linear operator[J].Amer Math Mon,1974,74:832-833.
  • 5LI C K.C-numerical range and C-numerical radii[J].Lin Multilin Alg,1994,37:51-82.
  • 6POON Y.The generalized k-numerical range[J].Linear and Multilinear Algebra,1980,9:181-186.
  • 7HAIMOS P R.A Hilbert space problem book[M].New York:Springer Press,1973.
  • 8LANGER H,TRETTER C.Spectral decomposition of some nonselfadjoint block operator matrices[J].J Operator Theory, 1998,39:339-359.
  • 9LANGER H,MARKUS A,MATSAEV V,et al.A new concept for block operator matrices:The quadratic numerical range[J].Liner Aigebra and Its Application,2001,330:89-112.
  • 10HORNE R A,JOHNSON C R.Topic in matrix analysis[M].Cambridge: Cambridge Univ Press,1991.

同被引文献41

  • 1王凯明,胡新利,贾双盈.l^2-范数下的非线性测度[J].纺织高校基础科学学报,2004,17(3):198-200. 被引量:5
  • 2郑宇,张鸿庆.固体力学中的Hamilton正则表示[J].力学学报,1996,28(1):119-125. 被引量:18
  • 3刘清荣,孙万贵,仝松林,巩馥洲.单参数线性算子族的积分半群[J].纺织高校基础科学学报,1996,9(3):233-242. 被引量:2
  • 4CHEN G, XUE Y. The expression of the generalized inverse of the perturbed operator under Type I perturbation in Hilbert spaces [ J ]. Linear Algebra Appl, 1998,285 : 1-6.
  • 5BOTT R,DUFFIN R J. On the algebra of network[ J]. Trans Amer Math Soe, 1953,74:99-109.
  • 6ISRAEL A Ben, GREVILLE T N E. Generalized inverse:Theory and applications [ M ]. 2nd ed. New York:Springer-Verlag, 2003.
  • 7CHEN G, LIU G, XUE Y. Perturbation theory for the generalized Bott-Duftin inverse and its applications [ J ]. Appl Math and Comput, 2002,129 ( 1 ) : 145-155.
  • 8GROETSCH G W. Generalized inverse of linear operators [ M ]. New York:Marcel Dekker, 1977.
  • 9HORN R A,JOHNOSON C R. Matrix analysis[ M]. New York:Cambridge University Press,1985.
  • 10HALMOS P R. Two subspaces [ J ]. Trans Amer Math Soc, 1959,114 : 381-389.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部