摘要
研究Hilbert空间H上的有界线性算子的n-次数值域的性质,n-次数值域与算子谱及n-次数值域之间的关系.将算子的二次数值域推广到n-次数值域,发现n-次数值域具有一系列与二次数值域类似的性质;在一定条件下,n-次数值域包含在二次数值域中.当空间是有限维时,算子的n-次数值域就等于算子的谱.
The nnumerical range is presented.The main results are a spectral inclusion theorem and the relation amogng nnumerical ranges. During the course of developing the quadratic numerical range into nnumerical range,the nnumerical range has the similur properties with the quadratic numerical and is contained in the quadratic numerical under condition.Especially,the nnumerical range equals the spectrum of operator when the dimension of the space is finite.
出处
《纺织高校基础科学学报》
CAS
2002年第4期287-290,309,共5页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(19771056)