摘要
提出一种加速分割特征算法与快速视网膜关键点描述子(FREAK)结合的图像配准算法。首先对图像建立尺度空间,并在此基础上利用加速分割特征优化算法检测图像特征点,结合Harris算法对特征点进行过滤,保留强角点用于图像配准;其次结合FREAK对检测的特征点进行描述,计算其特征向量,采用汉明距离替代传统的欧氏距离进行图像匹配,并采用随机采样一致性方法精炼匹配点来避免由于噪声和物体位置移动等原因产生的误匹配。从配准精度和配准时间两个方面,对本文方法与尺度不变特征变换算法、二进制稳健独立基本特征算法及原始FREAK算法进行对比实验,结果表明,本文方法具有配准速度快、准确性高、稳定性好等特点。
Image registration combining accelerated segmentation feature algorithm and fast retina keypoint(FREAK)algorithm is proposed.Firstly,the scale space is constructed for the image,and the image feature points are detected by the accelerated segmentation feature optimization algorithm.Keypoints are filtered by Harris algorithm and some strong corners retained are reserved for image registration.Secondly,the strong corners are described by FREAK and eigenvectors are calculated.Keypoints are matched by Hamming distance instead of traditional Euclidean distance.Matches are filtered with random sample consensus algorithm to avoid mismatch due to noise and moving objects.From the two aspects of registration accuracy and registration time,the comparative experiments between scale-invariant feature transform,binary robust independent elementary features,original FREAK and the proposed algorithm are carried out.The experimental results show that the proposed algorithm has the characteristics of fast registration speed,high accuracy and well-stability.
作者
李佳
段平
姚永祥
程峰
Li Jia;Duan Ping;Yao Yongxiang;Cheng Feng(College of Tourism and Geographical Sciences,Yunnan Normal University,Kunming,Yunnan650500,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2019年第1期138-144,共7页
Laser & Optoelectronics Progress
基金
国家自然科学基金(41401436)