期刊文献+

全变差噪声消除问题的半光滑牛顿法 被引量:10

Semi-smooth Newton method for total variation noise removal
下载PDF
导出
摘要 为了达到全变差噪声消除的图像去噪目的,将去噪问题转换为优化问题。采用了结合广义最小残差法的半光滑牛顿法来解决相关优化问题,求解非对称线性方程组,进行了理论分析和实验验证,取得了将该方法与其它方法应用于1维信号、2维图像去噪实验的大量可行数据。结果表明,结合广义最小残差法的半光滑牛顿法的收敛速度比结合预处理共轭梯度法的半光滑牛顿法和交替方向乘子法更快,而且能够有效地消除噪声。 In order to remove the noise of image based on total variation,the denoising problem was converted to optimization problem.Semi-smooth Newton method incorporated by generalized minimum residual method was used to solve the associated optimization problem and non-symmetric linear equations.After theoretical analysis and experimental verification,a great deal of feasible data of removal noise experiment for 1-D signal and 2-D image were obtained by different methods.The results show that semi-smooth Newton method incorporated by generalized minimum residual method converges faster than that incorporated by preconditioned conjugate gradients method and alternating direction method of multipliers algorithm.The proposed method can remove the noise of image effectively.
出处 《激光技术》 CAS CSCD 北大核心 2017年第2期289-295,共7页 Laser Technology
基金 国家自然科学基金资助项目(11361030)
关键词 图像处理 全变差 半光滑牛顿法 广义最小残差法 交替方向乘子法 image processing total variation semi-smooth Newton method generalized minimum residual method alternating direction method of multipliers algorithm
  • 相关文献

参考文献1

二级参考文献8

  • 1杨大地,刘仁达.加速广义极小残余新算法[J].重庆大学学报(自然科学版),2006,29(10):121-124. 被引量:2
  • 2James Baglama, Lothar Reichel. Decomposition methods for large linear discrete ill-posed problems [J]. Journal of Computational and Applied Mathematics, 2007, 198(2) : 332-343.
  • 3D. Calvetti, B. Lewis, L. Reichel. On the regularizing properties of the GMRES method[J]. Number. Math, 2002,91: 605-625.
  • 4D. Calvetti, L. Reichel, A. Shuibi. Enriched Krylov subspace methods for ill-posed problems[J]. Linear Algebra Apply, 2003,362(15) : 257 -273.
  • 5Y. Saad, M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems[J]. SIAM J Scientific Computing, 1989,11 (2):223-239.
  • 6J. W. Hilgers, B. S. Bertram. Comparing Different Types of Approximators for Choosing the Parameters in the Regularization of Ill-Posed Problems [J ]. Computers and Mathematics With Applications, 2004, 48 ( 10-11 ) : 1779-1790.
  • 7Hong M C, Stathaki T, Katsaggelos A K. Iteratire regularized least-mean mixed-norm image restoration [J]. Optical Engineering,2002,41:2515-2524.
  • 8钟宝江.一种灵活的混合GMRES算法[J].高等学校计算数学学报,2001,23(3):261-272. 被引量:17

共引文献3

同被引文献79

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部