摘要
为了实现暗环境下移动机器人导航中障碍物的检测与运动机器人的定位,采用了一种组合式光栅投射立体视觉传感器研究方法,首先通过光栅投射和立体视觉相融合的方法,建立光栅投射立体视觉传感器几何和数学模型,然后利用空间设备位置约束原理和投影平面相交的方法,进行了机器人视场内空间物体的3维坐标计算,建立了可靠真实的障碍物检测和分析方法,并进行了理论分析和实验验证,取得了距离计算精度0.8mm的数据。结果表明,该方法对于图像计算的精度在亚像素级。该方法有利于目前黑暗环境中机器人无法自主导航难题的突破,为黑暗环境中无全球定位系统支持的机器人导航提供了基础探索。
In order to detect obstacles and locate mobile robots in mobile robot navigation under dark environment,a novel visual navigation method based on grating projection stereo vision was proposed. At first,by combining with grating projection profilometry of plane structured light and stereo vision technology,the geometry and mathematical model of a grating projection stereo vision sensor were founded. Then,the method of space equipment position constraint and projection plane intersection were used and 3-D coordinates of the object in field of view of robot were calculated. A reliable and real method of obstacle detection and analysis was established. After theoretical analysis and experimental verification,the caculated range precision of 0. 8mm was obtained. The results show that the method can achieve sub-pixel accuracy in image computation. The study can be used to overcome the problem that the robot can't navigate autonomously in dark environment and provides a basis of robot navigation without global positioning system support in dark environment.
出处
《激光技术》
CAS
CSCD
北大核心
2017年第3期376-379,共4页
Laser Technology
基金
国家自然科学基金资助项目(61305123)