期刊文献+

飞秒时间分辨质谱技术在超快动力学中的应用进展

Technology of femtosecond time resolution mass spectroscopy and its applications in ultrafast dynamics
下载PDF
导出
摘要 飞秒时间分辨质谱技术是飞秒抽运-探测技术与飞行时间质谱技术的结合。可以测得在不同抽运-探测时间延迟下,分子电子激发态电离或解离而来的离子质谱;不同抽运-探测时间延迟下,质谱信号强弱的变化反映了激发态布居数的时态信息;给出了分子激发态和里德堡态中准确的寿命信息、分子激发态势能面非绝热耦合信息以及分子过渡态信息。介绍了飞秒时间分辨质谱技术在分子激发态研究中的最新应用进展,以及在里德堡态解离、异构化、内转换、系间交叉等超快动力学过程研究中的最新进展。指出飞秒时间分辨质谱技术将在一些新现象的研究中发挥重要的作用。 Femtosecond time-resolved mass spectrometry is the combination of femtosecond pump-probe technique and flight time mass spectrometry. By the technology,ion mass spectra from ionization or dissociation of the molecules excited state can be measured under different pump-probe time delays. The temporal information of the population of the excited states varies with the change of the strength of mass spectra. Some information is given,such as: the accurate lifetime of the excited state and Rydberg state,coupling information of potential energy surface and non adiabatic of molecular excited state, and excessive state information. The application of femtosecond time-resolved mass spectrometry in ultrafast dynamics process is introduced,such as: recent advances of molecular excited states and the latest progress of Rydberg state for dissociation, isomerization,conversion,and system cross. And it is pointed out that femtosecond time-resolved mass spectrometry will play an important role in the study of some new phenomena.
出处 《激光技术》 CAS CSCD 北大核心 2017年第3期456-463,共7页 Laser Technology
基金 国家自然科学基金资助项目(11564040 11204264) 新疆师范大学重点实验室招标课题资助项目(KWFG1502)
关键词 激光技术 超快动力学 质谱 飞秒时间分辨 laser technique ultrafast dynamics mass spectroscopy femtosecond time resolution
  • 相关文献

参考文献6

二级参考文献118

  • 1李新阳,鲜浩,王春鸿,姜文汉.波像差与光束质量β因子的关系[J].中国激光,2005,32(6):798-802. 被引量:16
  • 2Blanchet, V.; Zgierski, M. Z.; Seideman, T.; Stolow, A. Nature1999, 401, 52. doi: 10.1038/43410.
  • 3Schick, C. P.; Carpenter, S. D.; Weber, P. M. J. Phys. Chem. A1999,103, 10470. doi: 10.1021/jp992065y.
  • 4Schmitt, M.; Lochbrunner, S.; Shaffer, J. P.; Larsen, J. J.;Zgierski, M. Z+; Stolow, A. J. Chem. Phys. 2001,114, 1206. doi:10.1063/1.1331637.
  • 5Suzuki, Y. I.; Horio, T.; Fuji, T.; Suzuki, T. J. Chem. Phys. 2011,134, 184313. doi: 10.1063/1.3586809.
  • 6Sobolewski, A. L.; Domcke, W. Eur. Phys. J. D 2002,20, 369.doi: 10.1140/epjd/e2002-00164-5.
  • 7Suzuki, T.; Wang, L.; Kohguchi, H. J. Chem. Phys. 1999, 777,4859. doi: 10.1063/1.479822.
  • 8Wang, L.; Kohguchi, H.; Suzuki, T. Faraday Discuss 1999,113,37. doi: 10.1039/a902866h.
  • 9Tsubouchi, M.; Whitaker, B. J.; Wang, L.; Kohguchi, H.;Suzuki, T. Phys. Rev. Lett. 2001, 86, 4500. doi: 10.1103/PhysRevLett.86.4500.
  • 10Song, J. K.; Tsubouchi, M.; Suzuki, T. J. Chem. Phys. 2001,115, 8810. doi: 10.1063/1.1410974.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部