摘要
在非线性微分方程x′=A(t)x+f(t,x)中,假定对所有的t∈R+,A(t)的特征值的实部都不大于某个负常数α,那么在某些给定条件下,利用指数型二分法等相关理论,可以证明这样的微分方程的零解是指数型渐近稳定的,且推广了Coppel的相关结论。
Suppose that every eigenvalue of A(t) has real part≤α<0 for all t∈R+ in the nonlinear differential equation x′=A(t)x+f(t,x),we can prove that the null solution of this differential equation is exponential stable under given conditions using the exponential dichotomy theory.The result extends relevant conclusions of the Coppel.
出处
《井冈山大学学报(自然科学版)》
2009年第2期38-39,43,共3页
Journal of Jinggangshan University (Natural Science)
关键词
指数稳定
特征根
指数型二分性
零解
exponetial stablity
eigenvalue
exponential dichotomy
null solution