期刊文献+

基于图像旋转变换的改进PCA与LVQ的人脸识别 被引量:3

Face Recognition Method with Improved PCA and LVQ Network Based on Image Rotation
下载PDF
导出
摘要 为有效解决BP分类器训练时易震荡,易陷入局部极小值和人脸图像由于受拍摄角度,表情变化等因素影响而导致识别率低的问题,提出一种基于图像旋转变换的改进的主成分分析(PCA)与学习向量量化网络(LVQ)相结合的新算法。首先用辐射模板对非正面人脸进行标准化,然后将PCA和具有多方向,多尺度滤波特性的二维Gabor相结合进行降维,最后使用鲁棒性强,结构简单的LVQ网络进行分类识别。本文算法利用ORL人脸库进行仿真,证明了此方法的可行性。 In order to effectively solve the saituation that easy to shock when BP classifier training,fall into local minima and face images affected due to the shooting angle,facial expression changes and other factors which led to the problem of low recognition are proposed based on improved image rotation transformation of primary component analysis( PCA) and learning vector quantization new algorithm network( LVQ) combine. Firstly with radiation for non-frontal face template to standardize,then classify PCA and Gabor filter which has multi-directional,multi-scale two-dimensional characteristics combine to reduce the dimension. Finally,distingnish with the simple network structure robust and good classification LVQ network. The algorithm uses the ORL database simulation to demonstrate the effectiveness of this method.
出处 《激光杂志》 北大核心 2015年第9期51-55,共5页 Laser Journal
基金 新疆维吾尔自治区科学基金(2015211C257)
关键词 GABOR特征 LVQ神经网络 人脸识别 辐射模板 主成分分析 Gabor wavelets LVQ neural network Face recognition Radial template Principal component analysis
  • 相关文献

参考文献10

  • 1Kumar, B.G.V.,Aravind, R.Computationally efficient algorithm for face super-resolution using (2D)2-PCA based prior. Image Processing, IET . 2010
  • 2Yasser Fouad Hassan,Nora Habeb.Hybrid System of PCA, Rough Sets andNeural Networks for Dimensionality Reduction and Classification in Human FaceRecognition. International Journal of Intelligent Information Processing . 2012
  • 3Lai Z,Xu Y,Chen Q. et al.Multilinear sparse principal component analysis. IEEE Transactions on Neural Networks and Learning Systems . 2014
  • 4Ho, H. T.,Chellappa, R.Pose-Invariant Face Recognition Using Markov Random Fields. Image Processing, IEEE Transactions on . 2013
  • 5Yang, Sheng-Sung,Siu, Sammy,Ho, Chia-Lu.Analysis of the initial values in split-complex backpropagation algorithm. IEEE Transactions on Neural Networks . 2008
  • 6MOURAD ZAIED,SALWA SAID,OLFA JEMAI,CHOKRI BEN AMAR.A NOVEL APPROACH FOR FACE RECOGNITION BASED ON FAST LEARNING ALGORITHM AND WAVELET NETWORK THEORY. International Journal of Wavelets, Multiresolution and Information Processing . 2011
  • 7Kabir, Humayun,Wang, Ying,Yu, Ming,Zhang, Qi-Jun.High-dimensional neural-network technique and applications to microwave filter modeling. IEEE Transactions on Microwave Theory and Techniques . 2010
  • 8Liao,S,Shen,D,Chung,A.C.S.A markov random field groupwise registration framework for face recognition. Transactions on Pattern Analysis and Machine Intelligence . 2014
  • 9Ouyang A,Li K,Zhou X,et al.Improved LDA and LVQ for face recognition. Applied Mathematics&Information; Science . 2014
  • 10Godara S,Gupta R.Neural Networks for Iris Recognition:Comparisons between LVQ and Cascade Forward Back Propagation Neural network Models,Architectures and Algorithm. Neural Networks . 2013

同被引文献20

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部