期刊文献+

基于四阶PDE模型的修正不动点图像复原方法研究

A Modified Fixed-point Iterative Algorithm for Image Restoration Using Fourth-order Model
下载PDF
导出
摘要 图像在传输、扫描、显示等过程中,由于各种随机噪声的影响,导致图像质量下降。针对此问题,本文结合四阶模型和偏微分方程(PDE)提出了一种图像复原方法。首先分析了四阶PDE模型的不动点算法,为提高算法效率,基于各向同性扩散的LLT模型提出了一种不用计算逆矩阵的快速修正不动点算法;同时根据不等式的基本性质和矩阵的普性质,验证了所述算法的收敛性;最后,为验证该算法的有效性,进行了相关数值实验。实验结果表明:四阶模型中的高阶项可以避免图像复原中的阶梯效应,算法的执行效率较高,图像去噪效果比较理想。 The image quality decline will be caused by the effects of various kinds of random noise in the process of transmission,scanning,display and so on. In order to solve this problem,an image restoration method is put forward combined with the fourth-order model and the partial differential equation( PDE) in this paper. Firstly,the fixed-point algorithm based on fourth-order PDE model is analyzed and a fast modified fixed-point algorithm without calculating inverse matrix based on the isotropic diffusion LLT model is put forward to improve the efficiency of algorithm. At the same time the convergence of this described algorithm is verified according to the basic nature of inequality and general properties of the matrix. Finally,some related numerical experiments are carried on to verify the effectiveness of proposed algorithm. The experimental results show that the higher order term of fourth-order model can avoid the staircase effect of image restoration,the execution efficiency of this algorithm is higher and image denoising effect is ideal.
作者 顾锦江
出处 《激光杂志》 北大核心 2015年第10期36-40,共5页 Laser Journal
基金 江苏经贸职业技术学院重点课题(JSJM014)
关键词 图像复原 修正不动点算法 PDE 收敛性 Image restoration Modified fixed-point algorithm PDE Convergence
  • 相关文献

参考文献17

  • 1Yu-Fei Yang,Zhi-Feng Pang,Bao-Li Shi,Zhi-Guo Wang.Split Bregman method for the modified lot model in image denoising[J]. Applied Mathematics and Computation . 2010 (12)
  • 2Zhi-Feng Pang,Yu-Fei Yang.A two-step model for image denoising using a duality strategy and surface fitting[J]. Journal of Computational and Applied Mathematics . 2010 (1)
  • 3Rong-Qing Jia,Hanqing Zhao,Wei Zhao.Convergence analysis of the Bregman method for the variational model of image denoising[J]. Applied and Computational Harmonic Analysis . 2009 (3)
  • 4Fangfang Dong,Zhen Liu,Dexing Kong,Kefeng Liu.An Improved LOT Model for Image Restoration[J]. Journal of Mathematical Imaging and Vision . 2009 (1)
  • 5Michael K. Ng,Liqun Qi,Yu-fei Yang,Yu-mei Huang.On Semismooth Newton’s Methods for Total Variation Minimization[J]. Journal of Mathematical Imaging and Vision . 2007 (3)
  • 6Marius Lysaker,Xue-Cheng Tai.Iterative Image Restoration Combining Total Variation Minimization and a Second-Order Functional[J]. International Journal of Computer Vision . 2006 (1)
  • 7Yunmei Chen,Hemant D. Tagare,Sheshadri Thiruvenkadam,Feng Huang,David Wilson,Kaundinya S. Gopinath,Richard W. Briggs,Edward A. Geiser.Using Prior Shapes in Geometric Active Contours in a Variational Framework[J]. International Journal of Computer Vision . 2002 (3)
  • 8Wen-Rong Wu,A. Kundu.Image estimation using fast modified reduced update Kalman filter. IEEE Transactions on Signal Processing . 1992
  • 9M. K. Ozkan,A. T. Erdem,M. I. Sezan,A. M. Tekalp.Efficient multiframe Wiener restoration of blurred and noisy image sequences. IEEE Transactions on Image Processing . 1992
  • 10Lysaker, Marius,Lundervold, Arvid,Tai, Xue-Cheng.Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on Image Processing . 2003

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部