期刊文献+

基于分数阶原始对偶模型的图像去噪方法 被引量:2

An Image Denoising Method Based on Fractional Order Primal-Dual Model
下载PDF
导出
摘要 图像去噪处理过程中,既要消除噪声又要保留图像边缘特征是很难实现的。为解决此问题,本文在ROF模型的基础上,结合对偶和分数阶理论,提出了一种分数阶原始对偶去噪模型。从结构上分析了分数阶原始对偶去噪模型与鞍点优化模型的相似性,并提出了一种基于预解式的原始对偶数值计算方法,用于模型求解。同时推导出了算法的收敛条件,并基于Morozov原理实现了模型正则化参数的自适应选取。最后,进行了数值实验。实验结果表明:基于分数阶的原始对偶模型能够改善图像的视觉效果,避免造成"阶梯效应",而且能够较好地保留图像的细节信息;基于预解式的原始对偶数值计算方法在一定的参数范围内能够快速收敛。 In the process of image denoising,it is difficult to eliminate image noise with keeping image edge characters. To solve this problem,a fractional order primal-dual denoising model is proposed on the basis of ROF model.The structural similarity between the saddle-point optimization model and this fractional order primal-dual model is analyzed. At the same time,a primal-dual algorithm based on resolvent for solving the saddle-point problem is proposed and it is used for solving the proposed model. The convergence condition of the algorithm is deduced and a regularization parameter adaptive selection method is obtained based on the principle of Morozov. Finally,numerical experiments are carried out. The experiment results show that the proposed model can improve the image visual effect effectively and can well reserve the detail of the image information. And the adoptive primal-dual numerical calculation method has faster convergence speed.
作者 史丽燕
出处 《激光杂志》 北大核心 2015年第12期42-46,共5页 Laser Journal
基金 2015年河南省科技计划软科学项目"基于云平台服务的辅助教学在高职教育中的应用研究"(152400410598)
关键词 图像去噪 原始对偶 分数阶 正则化参数 image denoising primal-dual fractional order regularization parameter
  • 相关文献

参考文献17

  • 1H. S. Bhadauria,M. L. Dewal.??Efficient Denoising Technique for CT images to Enhance Brain Hemorrhage Segmentation(J)Journal of Digital Imaging . 2012 (6)
  • 2Dali Chen,Shenshen Sun,Congrong Zhang,YangQuan Chen,Dingyu Xue.??Fractional-order TV-L 2 model for image denoising(J)Central European Journal of Physics . 2013 (10)
  • 3Antonin Chambolle.??An Algorithm for Total Variation Minimization and Applications(J)Journal of Mathematical Imaging and Vision . 2004 (1)
  • 4Huang Y,Paisley J,Lin Q,Ding X,Fu X,Zhang X P.Bayesian nonparametric dictionary learning for compressed sensing MRI. IEEE Transactions on Image Processing . 2014
  • 5J. F. Garamendi,F. J. Gaspar,N. Malpica,E. Schiavi.Box relaxation schemes in staggered discretizations for the dual formulation of total variation minimization. IEEE Transactions on Image Processing . 2013
  • 6Paul Rodríguez,Brendt Wohlberg.Efficient minimization method for a generalized total variation functional. IEEE Transactions on Image Processing . 2009
  • 7ZHANG Shu-cheng,Pu Y F.A Class of Fractional-order Variational Image Impainting Models. AppliedMathematics&Information Science . 2012
  • 8Sutour C,Deledalle C A,Aujol J F.Adaptive regularization of the NL-means:application to image and video denoising. IEEE Transactions on Image Processing . 2014
  • 9Amir Beck,Marc Teboulle.Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing . 2009
  • 10M. A.T. Figueiredo,J. M. Bioucas-Dias,R. D. Nowak.Majorization–Minimization Algorithms for Wavelet-Based Image Restoration. IEEE Transactions on Image Processing . 2007

共引文献1

同被引文献10

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部