期刊文献+

基于鉴别稀疏邻域保持嵌入算法的人脸识别技术 被引量:2

Face Recognition Based on Discriminant Sparsity Neighborhood Preserving Embedding
下载PDF
导出
摘要 本文针对人脸识别技术中的关键问题-特征提取,设计了一种新颖的人脸特征提取算法。结合稀疏表示和邻域保持嵌入算法,提出了一种鉴别稀疏邻域保持嵌入算法(DSNPE)。该算法可以基于稀疏表示创建近邻图,包括类内样本近邻图和类间样本近邻图,分别讨论了类内紧致性和类间稀疏性等问题。同时该鉴别稀疏邻域保持嵌入算法可以较好地利用样本类别信息,故该算法具有监督性。基于最大间距准则,建立了鉴别稀疏邻域保持嵌入算法的目标函数,并描述了该算法的基本流程。最后,在Yale、ORL和AR人脸数据库上进行了相关实验,并与SPP、NPE、LPP、MMC、LDA、PCA等算法比较,实验结果表明:基于鉴别稀疏邻域保持嵌入算法具有更好的人脸识别性能。 As the key issues of face recognition,a novel face extraction algorithm is proposed in this paper. A discriminant sparsity neighborhood preserving embedding algorithm( DSNPE) is proposed based on sparse representation and neighborhood embedding. The algorithm can create neighborhood graph with sparse representation,including within-neighborhood graph and between-neighborhood graph,respectively discusses the problems about within-class compactness and between-class sparseness. At the same time the DSNPE algorithm can take advantage of the sample category information better,so this algorithm has supervision. The objective function of DSNPE algorithm is established based on the maximum distance between standards,and its basic flow is described. Finally,the related experiment is conducted with comparison of SPP,NPE,LPP,MMC,LDA and PCA algorithm on Yale,ORL and AR face databases,the experimental results show that the discriminant sparsity neighborhood preserving Embedding algorithm has better performance of face recognition.
作者 徐东方
出处 《激光杂志》 北大核心 2015年第12期67-70,共4页 Laser Journal
基金 河南省人民政府发展研究中心课题项目(2015B213)
关键词 人脸识别 稀疏表示 近邻保持嵌入算法 类内紧致性 类间稀疏性 face recognition sparse representation neighborhood preserving embedding within-class compactness between-class sparseness
  • 相关文献

参考文献19

  • 1Guoying Zhao,Matti Pietikainen.Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2007
  • 2Cheng, Bin,Yang, Jianchao,Yan, Shuicheng,Fu, Yun,Huang, Thomas S.Learning with ? 1 -graph for image analysis. IEEE Transactions on Image Processing . 2010
  • 3H. . Cevikalp,M. . Neamtu,A. . Barkana.The Kernel Common Vector Method: A Novel Nonlinear Subspace Classifier for Pattern Recognition. IEEE Transactions on Systems Man and Cybernetics . 2007
  • 4W. Zhao,R. Chellappa,P. J. Phillips,A. Rosenfeld.Face recognition[J]. ACM Computing Surveys (CSUR) . 2003 (4)
  • 5Seong G. Kong,Jingu Heo,Besma R. Abidi,Joonki Paik,Mongi A. Abidi.??Recent advances in visual and infrared face recognition—a review(J)Computer Vision and Image Understanding . 2004 (1)
  • 6Weiwei Yu,Xiaolong Teng,Chongqing Liu.??Face recognition using discriminant locality preserving projections(J)Image and Vision Computing . 2005 (3)
  • 7Xiao-Sheng Zhuang,Dao-Qing Dai.??Inverse Fisher discriminate criteria for small sample size problem and its application to face recognition(J)Pattern Recognition . 2005 (11)
  • 8Xiaoyang Tan,Songcan Chen,Zhi-Hua Zhou,Fuyan Zhang.??Face recognition from a single image per person: A survey(J)Pattern Recognition . 2006 (9)
  • 9Gui-Fu Lu,Zhong Lin,Zhong Jin.Face recognition using discriminant locality preserving projections based on maximum margin criterion[J]. Pattern Recognition . 2010 (10)
  • 10Lishan Qiao,Songcan Chen,Xiaoyang Tan.Sparsity preserving projections with applications to face recognition[J]. Pattern Recognition . 2009 (1)

二级参考文献4

共引文献18

同被引文献34

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部