期刊文献+

一种精简点云的快速配准算法 被引量:4

A quick registration algorithm based on reduced point cloud
下载PDF
导出
摘要 针对三维重建过程中点云数据存在的配准速度慢、精度低问题,提出一种精简点云的快速配准算法。先采用自适应栅格法对点云数据进行精简;在点云数据精简的基础上,运用快速ICP算法进行配准,即采用法向量的变化提取初始特征点,并使用RANSAC算法获取初始配准点集,完成粗匹配;再通过最小二乘法迭代计算最优的坐标变换,完成点云的精匹配。实验结果表明,所提算法在保证良好的原始点云数据的几何特征的同时,有效减少点云数据的冗余量,提高了运行效率和匹配精度,为实时三维重建提供了有效保证。 Aiming at the problem of slow matching speed and low accuracy of point cloud data in the process of 3 D reconstruction,a fast point cloud registration algorithm based on voxel grid method is proposed. Firstly,the adaptive voxel grid method is used to simplify the point cloud data. Based on this,the quick ICP algorithm is used to register.In order to complete the rough matching,the normal vector is used to extract the initial feature points,and RANSAC algorithm is used to obtain the initial registration point set. Then the optimal coordinate transformation is iteratively calculated by the Least Squares algorithm for completing the fine matching of the point cloud. The experimental results show that the proposed algorithm can effectively reduce the redundancy of point cloud data while ensuring good geometric characteristics of the original point cloud data,improve the operating efficiency and matching accuracy,and provide an effective guarantee for real-time three-dimensional reconstruction.
作者 金露 王福伟 钟可君 伏燕军 JIN Lu;WANG Fuwei;ZHONG Kejun;FU Yanjun(Key Laboratory of Nondestructive Testing,Ministry of Education,Nanchang Hangkong University,Nanchang 330063,China)
出处 《激光杂志》 北大核心 2019年第2期59-62,共4页 Laser Journal
基金 国家自然科学基金(No.61661034 No.61465010) 江西省重点研发计划(No.20171BBE50012) 江西省教育厅科技计划(No.DA201808191)
关键词 三维点云 简化 栅格法 配准 迭代最近点 KINECT 3D cloud point simplification voxel grid registration ICP Kinect
  • 相关文献

参考文献4

二级参考文献46

  • 1吕强,王晓龙,刘峰,夏凡.基于点云配准的室内移动机器人6自由度位姿估计[J].装甲兵工程学院学报,2013,27(4):51-56. 被引量:5
  • 2蔡志敏,王晏民,黄明.基于KD树散乱点云数据的Guass平均曲率精简算法[J].测绘通报,2013(S1):44-46. 被引量:6
  • 3朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 4P J Besl, H D McKay. A method for registration of 3 D shapes [J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
  • 5G C Sharp, S W Lee, D K Wehe. ICP registration using invariant features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1). 90-102.
  • 6S Rusinkiewicz, M Levoy. Efficient variants of the ICP algorithm [C]. Quebec City: Proceedings of the 3rd International conference on 3 D Digital Imaging and Modeling, 2001. 145-152.
  • 7J Jiang, J Cheng, X L Chen. Registration for 3-D point clouds using angular invariant feature[J]. Neuro Computing, 2009, 72 (16 18): 3839-3844.
  • 8C Basdogan, A C Oztireli. A new feature based method for robust and efficient rigid body registration of overlapping point clouds[J]. The Visual Computer, 2008, 24(7-9)~ 679-688.
  • 9J J Dai, J Yang. A novel two stage algorithm for accurate registration of 3-D point clouds [ C ]. 2011 International Conference on Multimedia Technology, 2011. 6187-6191.
  • 10H Hoppe, T DeRose, T Duchamp, et al. Surface reconstruction from unorganized points[J]. Computer Graphics, 1992, 26(2): 71-78.

共引文献137

同被引文献47

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部