期刊文献+

一种复杂背景下的多车牌图像分割与识别方法 被引量:18

License Plate Recognition from Complex Scenes with Multiple Cars
下载PDF
导出
摘要 提出一种复杂背景下的多车牌图像分割和识别方法 .采用统计和特征匹配相结合的方法去除待识别图像中的背景 ,提取可能存在车辆的区域 ;分别对可能的车辆区域进行局部边缘检测 ,并使用车牌的先验知识确定车牌的位置和单个字符分割 ,包括车牌倾斜时的字符分割 ;使用 PCA和 BP神经网络相结合的方法精确识别车牌 .实验结果表明 ,该方法对复杂背景下多车牌的分割和识别是有效的 . This paper addresses the recognition of multiple license plates from an image sequence acquired by a fixed video camera for video surveillance. The segmentation of cars from complex background is done using statistical method integrated with feature matching. Then license plate on each car is located and each single character is segmented. The single character recognition of inclined license plates by PCA and BPNN is also discussed. Experimental results show that using the method discussed, the segmentation and recognition of license plates in complex background can be done effectively.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2003年第1期91-94,99,共5页 Transactions of Beijing Institute of Technology
关键词 多车牌图像 车牌识别 图像分割 特征匹配 字符识别 图像识别 边缘检测 license plate recognition image segmentation feature corresponding character recognition
  • 相关文献

参考文献8

  • 1Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[Z]. CVPR99, Fort Colins, 1999.
  • 2Toyama K, Krumm J, Brumitt B et al. Wall-flower: Principle and practice of background maintenance[Z]. ICCV, Kerkyra, Greece, 1999.
  • 3Rittscher C, Kato J, Joga S. A probabilistic background model for tracking[Z]. ECCV, Dublin Ireland, 2000.
  • 4Ridder A, Munkelt O, Kirchner H. Adaptive Kalman-filtering[Z]. ICRAM'95, Istanbul, 1995.
  • 5Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction[Z]. ECCV, Dublin, Ireland, 2000.
  • 6Gutchess D, Trajkovic M, Cohen-Solal E. A background model initialization algorithm for video surveillance[Z]. ICCV, Vancouver, Canada, 2001.
  • 7LeBourgeois F. Robust multifont OCR system from gray level images[Z]. ICDAR, Ulm, 1997.
  • 8徐一华,朱玉文,贾云得.一种人头部实时跟踪方法[J].中国图象图形学报(A辑),2002,7(1):11-15. 被引量:5

二级参考文献9

  • 1Cordea M D, Petriu E M, Georganas N D et al, Real-time 2^1/2D head pose recovery for model-based video-coding[A], In:Proc. IEEE on Instrumemation and Measurement Technology [C]. Baltimore, MD, 2000:601-606.
  • 2Crowley J L, Berard F, Multi modal tracking of faces far video communications [A], In: Proc. IEEE on CVPR[C]. San Juan, Puerto Rico, 1997:640-645.
  • 3Jianbo Shi, Carlo Tomasi. Good leatures to track[A], In:Proc. IEEE on CVPR[C]. Seattle, WA, 1994:593-600.
  • 4Tiziano Tommasini, Andrea Fusiello, Emanuele Truceo et al. Making good features track better[A]. In: Proc. IEEE on CVPR[C]. Santa Barbara, CA,1998:178-183.
  • 5Antonio C, Brendan F, Huang T S. Detection and tracking of faces and facial features[A], In:Proc. IEEE on ICIP[C], Kobe, Japan, 1999:657-661.
  • 6Antonio C, Ricardo L, Huang T S. 3D model based head tracking[J]. In:proc. of SPIE on VCIP[C], San Jose, CA,1997. 3024: 426-434.
  • 7Marco Cascia. John Isidoro, Stan Sclaroff. Head tracking via robust registration in texture map images[A]. In :Proc. IEEE on CVPR[C]. Santa Barbara, CA.1998:508-514.
  • 8Jie Yang, Alex Waibel, Tracking human faces in real-time [R].CMU CS Technical Report, CMU-CS-95-210. 1995.
  • 9Nuria Oliver, Alex Pentland, Francois Berard. LAFTER:Lips and face real time tracker with facial expression recognition[A]. In:Proc. IEEE on CVPR[C]. San Juan, Puerto Rico, 1997:123-129.

共引文献4

同被引文献100

引证文献18

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部