期刊文献+

图的对偶带宽问题(英文)

The Dual Bandwidth Problem for Graphs
下载PDF
导出
摘要 图 G的带宽问题的一般提法是 :将图 G嵌入于主图 H,使得 G的边的最大跨度达到最小 .当图 G表示一种冲突关系时 ,便提出如下的对偶问题 :将图 G嵌入于主图 H,使得边的最小跨度达到最大 .研究了对偶带宽问题的基本性质和计算复杂性 . The bandwidth problem of a graph G is to embed G into a host graph H such that the maximum stretch of the edges of G is minimized. In case of graph G representing a conflict relation, the following dual problem is proposed: to embed G into a host graph H such that the minimum stretch of the edges of G is maximized. An introductory study of the dual bandwidth problem is presented.
机构地区 郑州大学数学系
出处 《郑州大学学报(理学版)》 CAS 2003年第1期1-5,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目,编号 10 0 710 76
关键词 图标号 对偶带宽 计算复杂性 基本性质 冲突关系 跨度 图论 graph labelling bandwidth dual bandwidth computational complexity elementary properties
  • 相关文献

参考文献6

  • 1[1]Chinn P Z, Chvatalova J, Dewdney A K,et al. The bandwidth problem for graphs and matrices-a survey. Journal of Graph Theory, 1982,6(2): 223~254.
  • 2[2]Chung F R K. Labelings of graphs . In: Selected Topics in Graph Theory (L W Beineke and R J Wilson, eds), 1988,3:151~168.
  • 3[3]Roberts F S. New directions in graph theory. Annals of Discrete Mathematics, 1993,55:13~44.
  • 4[4]Burkard R E, Dollani H, Lin Y,et al. The obnoxious center problem on a tree. SIAM Journal of Discrete Mathematics, 2001, 14(4): 498~509.
  • 5[5]Bondy J A, Murty U S R. Graph Theory with Applications. New York: American Elsevier, 1976.
  • 6[6]Garey M R, Johnson D S. Computers and Intractability: A Guid to the Theory of NP-completeness. San Francisco: W H Freeman and Company, 1979.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部