期刊文献+

任意平面域上内部特征约束的变密度三角化方法 被引量:4

AN ALGORITHM FOR GRADED TRIANGULATION ON PLANAR DOMAINS WITH ARBITRARY INTERNAL CONSTRAINTS
下载PDF
导出
摘要 基于Delaunay三角化方法和前沿生成方法,给出了具有任意内部特征的平面域变密度三角形网格生成方法。针对不同的内部特征,可任意设定其网格尺寸,通过加权平均,有效地控制网格的尺寸变化,最终实现了网格的疏密光滑过渡。 Based on the Delaunay triangulation method and the advancing front method, an algorithm for graded triangular mesh generation on planar domains with arbitrary internal characteristic constraints is presented. According to the different internal characteristic constraints, the mesh siges can be arbitrarily set. The changing of mesh sizes can be controlled effectively by weighted averaging, so that a smooth graded triangular mesh is achieved.
出处 《计算机应用与软件》 CSCD 北大核心 2003年第3期50-51,共2页 Computer Applications and Software
关键词 变密度三角化方法 平面区域 内部特征约束 网格划分 变密度网格 DELAUNAY三角形 图形处理 Planar domain Internal characteristic constraint Mesh generation Graded mesh
  • 相关文献

参考文献4

  • 1[1]Lo S. H., Delaunay triangulation of non _ convex planar domains, Int. J.Numer. Methods Eng., 1989,28:2695 ~ 2707.
  • 2[2]Weatherill N. P., Hassan O., Efficient threee - dimensional delaunay triangulation with automatic point creation and imposed boundary constraints,1994,37:2005 ~ 2039.
  • 3[3]Lo S. H. ,Generation of high _ quality gradation finite element mesh,Engineering Fracture Mechanics, 1992,41 (2): 191 ~ 202.
  • 4[4]George P. L., Seveno E., The advancing- front mesh generation method revisited, Int. J. Numer. Methods Eng. ,1994,37:3605 ~ 3619.

同被引文献27

  • 1刘金义,刘爽.Voronoi图应用综述[J].工程图学学报,2004,25(2):125-132. 被引量:75
  • 2王兆清,冯伟.Delaunay多边形单元的有理函数插值格式[J].力学季刊,2004,25(3):375-381. 被引量:16
  • 3陈彦军,吴国平,李敬民.基于GIS空间分析的物流配送模型研究及应用[J].南京师范大学学报(工程技术版),2004,4(3):68-72. 被引量:16
  • 4ZIENKIEWlCZ O C, ZHU J Z. A simple error estimator and adaptive procedure for practical engineering analy- sis[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 337-357.
  • 5BABUSKA I, STROUBOULIS T. Validation of a posteri- ori error estimators by numerical approach[J]. International Journal for Numerical Methods in Engineering, 1994, 37(7): 1 073-1 123.
  • 6PEDRO Diez, ANTONIO Huerta. A unified approach to remeshing strategies for finite element h-adaptivity[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 176(2): 215-229.
  • 7JONES M T, PLASSMANN P E. Adaptive refinement of unstructured finite-element meshes[J]. Finite Element in Analysis and Design, 1997, 25(1): 41-60.
  • 8COOREVITS P, BELLENGER E. Alternative mesh optimality criteria for h-adaptive finite element method[J]. Finite Elements in Analysis and Design, 2004, 40(10): 1 195-1 215.
  • 9LEE C K, HOBBS R E. Automatic adaptive finite element mesh generation over arbitrary two dimensional domain using advancing front[J]. Computers and Structures, 1999, 71(1): 9-34.
  • 10SHEWCHUK J R. Delaunay refinement algorithms for triangular mesh generation[J]. Computational Geometry, 2002, 22(1): 21-74.

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部