期刊文献+

基于并行特征组合与广义K-L变换的字符识别 被引量:18

Handwritten Character Recognition Based on Parallel Feature Combination and Generalized K-L Expansion
下载PDF
导出
摘要 针对传统的串行特征融合方法的弱点,提出了一种新的并行特征融合方法.该方法的基本思路是:首先,利用复向量将样本空间上的两组特征集组合起来,构成复特征向量空间;然后,从理论上推广了经典的K-L变换方法与3种基本的K-L展开方法,使其适用于复特征向量空间内的特征抽取.此外,还揭示了并行特征融合的对称性质,并详细讨论了并行特征组合的策略问题.最后,用所提出的方法来解决手写体字符的特征抽取与识别问题.在南京理工大学NUST603HW手写体汉字库以及Concordia大学的CENPARMI手写体阿拉伯数字数据库上的实验结果表明,所提出的特征融合方法不仅较大幅度地提高了识别率,而且识别结果优于传统的串行特征融合方法. Considering the weaknesses of traditional serial feature fusion technique, a novel parallel features fusion method is proposed in this paper. The main idea of this method can be described as follows. First of all, two sets of feature vectors corresponding to a same sample space are combined together via complex vectors, which are used to construct a complex feature vector space. Then, the classical K-L transform and K-L expansion methods are developed theoretically to suit for feature extraction in the complex feature space. Moreover, the symmetric property of parallel feature fusion is revealed, and, how to combine features effectively is discussed in detail. Finally, the proposed method is used to solve the handwritten character feature extraction and recognition problems. Experiments are performed on NUST603 handwritten Chinese character database built in Nanjing University of Science and Technology as well as the well-known CENPARMI handwritten digit database of Concordia University. The experimental results indicate that the recognition rates are improved significantly after parallel feature fusion, and the proposed parallel features fusion method is superior to the traditional serial feature fusion one.
出处 《软件学报》 EI CSCD 北大核心 2003年第3期490-495,共6页 Journal of Software
关键词 并行特征组合 广义K-L变换 字符识别 汉字库 汉字信息处理 feature fusion feature combination generalized K-L transform feature extraction handwritten character recognition
  • 相关文献

参考文献2

二级参考文献4

  • 1Lee Seong Whan,IEEE Trans Pattern Anal Machine Intell,1996年,18卷,6期,648页
  • 2Liao Simon,IEEE Trans Pattern Anal Machine Intell,1996年,18卷,3期,254页
  • 3Trier Oivind,Pattern Recognition,1996年,29卷,4期,641页
  • 4Mor Shunjl,IEEE Proc,1992年,80卷,7期,1029页

共引文献35

同被引文献164

引证文献18

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部