期刊文献+

一种基于正则化方法的准最佳图像复原技术 被引量:13

A Close-to-Optimal Image Restoration Technique Based on Regularization Method
下载PDF
导出
摘要 提出一种基于正则化方法的高效图像复原技术.正则化残量的能量越小,则恢复效果越好,基于此,利用小波变换定性地分析如何选取正则化算子,利用随机理论得到正则化残量的能量期望值,通过最小化这个期望模型确定正则化参数,从而得到正则化图像.定性分析表明,在通常情况下应选取低阻高通的正则化算子.实验结果表明,该恢复技术比传统方法的恢复性能要好,恢复效果接近最佳且性能稳定. A technique based on regularization method and restores image to close-to-optimal is proposed in this paper. The less the energy of the regularized residue, the better the image restoration. Based on this idea, wavelet transform is employed to choose regularization operator qualitatively, and stochastic theory is used to calculate the expectation of the energy, by minimizing the expectation to determine regularization parameter. Qualitative analysis concludes that the regularization operator should be low-stop and high-pass, and the experimental results show that the performances of this method are better than the traditional methods and yields steadily close-to-optimal restoration.
出处 《软件学报》 EI CSCD 北大核心 2003年第3期689-696,共8页 Journal of Software
基金 Supported by the National Natural Science Foundation of China under Grant Nos.60073043 70071042 60133010 60204001 (国家自然科学基金) the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No.02C640 (湖南省教育
关键词 正则化方法 准最佳图像复原技术 图像恢复 小波变换 随机理论 图像处理 regularization method image restoration wavelet transform
  • 相关文献

参考文献9

  • 1[1]Katsaggelos AK. Digital Image Restoration. Berlin: Springer-Verlag, 1991.
  • 2[2]Andrews H, Hunt B. Digital Image Restoration. Englewood Cliff, NJ: Prentice-Hall, 1977.
  • 3[3]Berter M, Poggio T, Torre V. Ill-Posed problems in early vision. Proceedings of the IEEE, 1988,76(8):869~889.
  • 4[4]Calvetti D, Reichel L, Sgallari F, Spaletta G. A regularizing Lanczos iteration method for undetermined linear systems. Journal of Computation and Applied Mathematics, 2000,115:101~120.
  • 5[5]Hansen PC, O'Leary DP. The use of the L-curve in the regularization of discrete ill posed problems. SIAM Journal on Scientific Computing, 1993,14:1487~1503.
  • 6[6]Tekalp A, Kaufman H, Woods J. Edge-Adaptive Kalman filtering for image restoration with ringing suppression. IEEE Transactions on Acoustic Speech and Signal Processing, 1989,37(6):892~899.
  • 7[7]Qian W, Clarke LP. Wavelet-Based neural network with fuzzy-logic adaptivity for nuclear image restoration. Proceedings of the IEEE, 1996,84(10):1458~1473.
  • 8[8]Wong HS, Ling G. Application of evolutionary programming to adaptive regularization in image restoration. IEEE Transactions on Evolutionary Computation, 2000,4(4):309~326.
  • 9[9]Bertero M, Boccacci P. Introduction to Inverse Problems in Imaging. Dirac House, Temple Back, Bristol BSI 6BE, UK: Institute of Physics Publishing, 1998.

同被引文献101

引证文献13

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部