期刊文献+

一种新的多主体学习方法 被引量:2

A New Approach of Learning in Multi-agent System
下载PDF
导出
摘要 提出了一种在大型复杂的多主体系统中逐步改进个体与群体问题求解能力的学习方法——基于基组织结构的共识学习方法 .通过该方法 ,各主体能够针对某一领域问题交换意见 ,分别扩充或修改各自原有的知识 ,直到达成共识 。 A consensus learning approach based on Bansic Organization Structure (BOS) is proposed in this paper,which can improve problem solving abilities of both individual agents and overall system in large and complex multi agent systems.Through this learning approach,each agent can exchange their ideas about the domain problem,augment or modify their original knowledge until they conclude a consensus,Finally,how the abilities of individual agents and overall system are improved through consensus learning is described in detail by an example.
出处 《小型微型计算机系统》 CSCD 北大核心 2003年第3期345-347,共3页 Journal of Chinese Computer Systems
基金 国家自然科学基金 (项目编号 7980 0 0 0 7)资助
关键词 多主体学习方法 分布式人工智能 机器学习 多主体系统 multi agent learning organization consensus negotiation
  • 相关文献

参考文献3

  • 1姚莉,张维明.用于协作信息处理的基组织结构模型[J].小型微型计算机系统,2000,21(6):628-630. 被引量:3
  • 2[2]Sen S,Weiss G. Learning in multiagent systems.In: Weiss G.(ed.)Multiagent Systems[M].The MIT Press,1999
  • 3[3]Finin Tim,Labrou Yannis,Mayfield James.KQML as an agent communication language.In:Jeffrey M.Bradshaw (ed.)Software agents[M]. AAAI Press /The MIT Press,1996

二级参考文献3

共引文献2

同被引文献16

  • 1陈卓,孟庆春,魏振钢.基于群体智能理论的聚类模型及优化算法[J].计算机工程,2005,31(4):34-36. 被引量:8
  • 2Han Jia-wei,et al.Data Mining:Concepts and Techniques[M].范明,等.北京:机械工业出版社,2000.2-20.
  • 3Ester M,Kriegel H P,et al.Density-based Algorithm for Discovering Clusters in Large Spatial Databases[C].Porland,OR:Proc.of 1996 Int.Conf.on Knowledge Discovery and Data Mining,1996.226-231.
  • 4Berchtold S,Keim D,Kriegel H P.The X-tree:An Index Structure for High-dimensional Data[C].Bombay,India:Proceedings of the International Conference on Very Large Databases,1996.28-39.
  • 5Sheikholeslami G,Chatterjee S,Zhang A.Wave-Cluster:A Multiresolution Clustering Approach for Very Large Spatial Databases[C].New York:Proceedings of the 24th International Conference on Very Large Databases,1998.428-439.
  • 6Agrawal R,Gehrke J,Gunopulos D,et al.Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications[C].Seattle,WA:Proceedings of the ACM SIGMOD International Conference on Management of Data,1998.94-105.
  • 7Hinneburg A,Keim D A.Optimal Gird-Clustering,Towards Breaking the Curse of Dimensionality in High-dimensional Clustering[C].Edinburgh,Scotland:Proceedings of the 25th International Con-ference on Very Large Databases,1999.506-517.
  • 8Hinneburg A,Keim D A.An Efficient Approach to Clustering in Large Multimedia Databases with Noise[C].New York:Proceedings of the International Conference on Knowledge Discovery and Data Mining(KDD'98),1998.58-66.
  • 9Chen Zhuo,Meng Qing-chun.A New-type Incremental Clustering Algorithm Based on Swarm Intelligence Theory[C].Shanghai:The 3rd International Conference on Machine Learning and Cybernetics (ICMLC2004),2004.1768-1772.
  • 10E Bonabeau,M Dorigo,G Theraulaz.Swarm Intelligence:From Natural to Artificial Systems[M].New York:Oxford University Press,1999.5-43.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部