摘要
我们将在有单位元的C—代数中讨论谱理论。为此,对于没有单位元的C—代数,我们必需给予以下引理: 引理:设μ是无单位元的C—代数,≡{(α,A)|α∈D,A∈μ}。其运算规定如下:(α,A)(β,B)=(α+β,A+B),(α,A)(β,B)=(αβ,αB+βA+AB)。对合规定为(α,A)=(A),再定义‖(α,A)‖=Sup{‖αB+AB‖|B∈μ,‖B‖=1}为的一个范教,那末关于这个范教是一个C—代数。可视代数μ为的由偶(O,A)组成的C—子代数。
出处
《九江学院学报(社会科学版)》
1983年第4期21-25,共5页
Journal of Jiujiang University:Social Science Edition