期刊文献+

非线性光子晶体中的非线性衍射高阶次谐波 被引量:3

High-Order Nonlinear Diffraction Harmonics in Nonlinear Photonic Crystals
原文传递
导出
摘要 提出一种在非线性光子晶体中实现非线性衍射高阶次谐波的方案。基于观察到的多个锥形四次谐波,理论分析了实现五次谐波和六次谐波的可行性。当仅有一种激光光束入射到非线性光子晶体中时,可观察到红、绿和蓝锥形光的同时输出,这可为环形三基色、连续环形谐波以及环形白色光源的实现提供参考。其中,蓝色锥形光波可能源于有倒易矢量参与的级联五次非线性衍射谐波过程。同一基频波长下非线性切伦科夫五次谐波的辐射锥角均大于低阶次谐波的辐射角,且不同基频波长下的非线性切伦科夫五次谐波存在最小的辐射锥角。当入射基频波长为3319.5 nm时,五次谐波中e光的形成过程为非线性布拉格衍射,这可为六次非线性衍射谐波的产生提供有利条件。 A scheme for realizing high-order nonlinear diffraction harmonics in a nonlinear photonic crystal is described. Based on the multiple conical fourth-order harmonics observed, the feasibility of realizing the fifth-order and sixth-order harmonics via nonlinear diffraction is theoretically analyzed. The simultaneous generation of red, green, and blue conical harmonics is observed under only one input laser beam, which is beneficial to the realization of three primary colors, continuous harmonics and even ring white light sources. The blue conical output harmonics may be attributed to the cascaded nonlinear diffraction process of fifth-order harmonic involving the reciprocal vectors. Under the same fundamental wavelength, the conical angle of the fifth-order nonlinear ?erenkov harmonic is always larger than those of the other lower-order harmonics. Moreover, there always exists a minimum conical angle for the fifth-order nonlinear ?erenkov harmonics under different input wavelengths. When the input fundamental wavelength is 3319.5 nm, the generation process for the fifth-order harmonic e light is corresponding to nonlinear Bragg diffraction, which is helpful for the effective generation of a sixth-order nonlinear diffraction harmonic.
作者 马博琴 李黄佳 Ma Boqin;Li Huangjia(Faculty of Science and Engineering,Communication University of China,Beijing100024,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2019年第2期206-212,共7页 Chinese Journal of Lasers
基金 中国传媒大学校级工科规划项目(3132017XNG1709,2018CUCTJ043)
关键词 非线性光学 高阶次谐波 非线性光子晶体 非线性衍射 分形超晶格结构 非线性切伦科夫辐射 nonlinear optics high-order harmonics nonlinear photonic crystal nonlinear diffraction fractal superlattice structure nonlinear Cerenkov diffraction
  • 相关文献

参考文献3

二级参考文献13

  • 1Armstrong J A, Bloembergen N, Ducuing J, et al.. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939.
  • 2Mandelbrot B. Fractals: Form, Chance and Dimension[M]. San Francisco: WH Freeman, 1977.
  • 3Sheng Yan, Roppo Vito, Ren Mingliang, et al.. Multi-directional Cerenkov second harmonic generation in two-dimensional nonlinear photonic crystal[J]. Optics Express, 2012, 20(4): 3948-3953.
  • 4Zhao Xiaohui, Zheng Yuanlin, Ren Huaijin, et al.. Cherenkov second-harmonic Talbot effect in one-dimension nonlinear photonie crystal [J]. Optics Letters, 2014, 39(20): 5885-5887.
  • 5Ayoub Mousa, Roedig Philip, Imbrock Jorg, et al.. Cascaded Cerenkov third-harmonic generation in random quadratic media[J]. Applied Physics Letters, 2011, 99(24): 241109.
  • 6Ren Huaijin, Deng Xuewei, Zheng Yuanlin, et al.. Nonlinear Cherenkov radiation in an anomalous dispersive medium[J]. Physical Review Letters, 2012, 108(22): 223901.
  • 7Saltiel Solomon Mois, Sheng Yan, Voloch-Bloch Noa, et al.. Cerenkov - type second-harmonic generation in two-dimensional nonlinear photonic structures[J]. IEEE Journal of Quantum Electronics, 2009, 45(11): 1465-1472.
  • 8Zhang Y, Gao Z D, Qi Z, et al.. Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides[J]. Physical Review Letters, 2008, 100(16): 163904.
  • 9Edwards G J, Lawrence M. A temperature-dependent dispersion equation for congruently grown lithium niobate[J]. Optical and Quantum Electronics, 1984, 16(4): 373-375.
  • 10P Ferraro, S Grilli, P De Natale. Ferroelectric Crystals for Photonic Applications[M]. Berlin Heidelberg: Springer Verlag, 2009: 259-284.

共引文献9

同被引文献37

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部