期刊文献+

堆叠图嵌入极限学习机算法 被引量:3

Stacked graph embedded extreme learning machine algorithm
原文传递
导出
摘要 极限学习机(Extreme learning machine,ELM)因其训练参数少、学习速度快、泛化能力强等特点,已被广泛应用于训练单隐藏层前馈神经网络。本文首先结合图嵌入框架提出一种新的极限学习机自编码器(GEELM-AE),在ELM空间中挖掘数据的局部近邻结构信息和全局结构信息。在GEELM-AE中,采用局部Fisher判别分析构建了图嵌入框架下的本征图和惩罚图。进而,通过堆叠多个GEELM-AE提出了深度框架下的堆叠图嵌入极限学习机(SGE-ELM)算法。在多个标准数据集上的实验结果表明,与已有算法比较,本文算法获得了更高的精度并具有较快的训练速度。这验证了提出的图嵌入极限学习机自编码器能够对原始数据进行有效的特征表示,堆叠的多层图嵌入极限学习机能够获得数据的有效的高层次抽象表征。 Extreme Learning Machine(ELM)is characterized by least training parameters,fast training speed and strong generalization ability.It has been extensively applied to train single layer feed-forward neural networks.To exploit both local near-neighbor structure and global structure information in ELM spaces,a Graph Embedded Extreme Machine Autoencoder(GEELM-AE)is proposed.In GEELM-AE,an intrinsic graph and penalty graph for graph embedding are constructed by local Fisher discrimination analysis.Further,the framework of Stacked Graph Embedded ELM(SGE-ELM)by stacking several GEELM-AEs is proposed.Experimental results on several benchmarks indicate that the SGE-ELM obtains higher accuracy and faster training speed as compared with other algorithms.This validates that the GEELM-AE can obtain effective feature representationof the original data,and the SGE-ELM van obtain high level abstract and efficient representations.
作者 孙玮婷 葛宏伟 姚瑶 孙亮 SUN Wei-ting;GE Hong-wei;YAO Yao;SUN Liang(College of Computer Science and Technology,Dalian University of Technology,Dalian 116024,China;Key Laboratory of Symbol Computation and Knowledge Engineering,Ministry of Education,Jilin University,Changchun 130012,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第1期230-241,共12页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61572104 61402076) 符号计算与知识工程教育部重点实验室课题(93K172017K03)
关键词 人工智能 极限学习机 图嵌入 堆叠自编码器 深度神经网络 artificial intelligence extreme learning machine graph embedding stacked autoencoder deep neural network
  • 相关文献

同被引文献44

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部