期刊文献+

基于实体对弱约束的远监督关系抽取 被引量:5

Distant supervision for relation extraction with weak constraints of entity pairs
原文传递
导出
摘要 为缓解远监督关系抽取中的假阳性问题并进一步提高关系抽取的准确率和召回率,提出基于实体对弱约束的远监督关系抽取模型。首先,从知识库和文本中获取实体对的约束信息,约束信息由实体对关键词和实体类型两部分组成;然后,通过训练神经网络模型自动获取不同关系所对应的实体对约束信息的特征;最后,将这些特征用作弱约束联合语句特征一起进行关系预测。在对比实验中,基于实体对弱约束的模型达到了更高的准确率和召回率,表明了实体对弱约束能有效缓解假阳性问题、加强关系抽取。 In order to alleviate the false positive problem in distant supervision for relation extraction and improve the precision and recall rate,this paper presents a distant supervision model with weak constraints of entity pairs for relation extraction.This approach first gains constraint information of entity pairs from knowledge base and plain text,which contains key words of entity pairs and entity types.Then the model can obtain features of constraint information automatically by training neural networks.Then these features are used as weak constraints during relation prediction in company with the features of sentences.In contrast experiments,the model with weak constraints of entity pairs achieves higher precision and recall rate.Results show that weak constraints of entity pairs can effectively alleviate the false positive problem and enhance relation extraction.
作者 欧阳丹彤 肖君 叶育鑫 OUYANG Dan-tong;XIAO Jun;YE Yu-xin(College of Computer Science and Technology,Jilin University,Changchun 130012,China;Key Laboratory of Symbolic Computation and Knowledge Engineering,Ministry of Education,Jilin University,Changchun 130012,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第3期912-919,共8页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61672261,61502199,61402196) 浙江省自然科学基金项目(LY16F020004)
关键词 人工智能 远监督关系抽取 神经网络 实体对弱约束 注意力机制 artificial intelligence distant supervision for relation extraction neural networks weak constraints of entity pairs attention mechanism
  • 相关文献

同被引文献25

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部