摘要
介绍了中国计量科学研究院研制的100~400 K真空红外亮温标准黑体辐射源的工作原理、结构、性能测试方法及测试结果。黑体辐射源通过液氮制冷与3温区控制实现了100~400 K范围内的温度控制。在真空环境下,测试了其在温度范围100~400 K轴向温度均匀性、底部温度稳定性等技术指标,结果表明均匀性优于0. 120K,控温稳定性优于0. 020 K/20 min;在室温大气环境下,利用基于控制环境辐射的发射率测量方法测量了黑体空腔发射率,空腔法向发射率为0. 9998。采用基于蒙特卡罗黑体发射率仿真计算方法分析轴向温度均匀性对空腔发射率的影响,分析了标准黑体辐射源的不确定度来源,在8~16μm波长亮度温度的合成标准不确定度优于0. 030 K。
The working principles,structure,performance-testing methods and the testing results of the vacuum infrared radiance temperature standard blackbody source is described. By applying liquid nitrogen cooling and 3-temperature-zones controlling,the temperature of this blackbody radiation source can be controlled at the range from 100 K to 400 K. The axial temperature uniformity,temperature stability of the cavity bottom of the blackbody within 100 ~ 400 K are tested in a vacuum environment. Testing results are shown that the uniformity is better than 0. 120 K,and the stability of the temperature is controlled below 0. 020 K/20 min,respectively. In the atmospheric environment at room temperature,the emissivity of the blackbody is 0. 999 8 measured by the method based on controlling surroundings radiation. Based on the Monte Carlo blackbody emissivity simulation method,the influence of the temperature uniformity of the cavity emissivity is analyzed. The source of uncertainty of this blackbody radiation source is analyzed,and the combined standard uncertainty is less than 0. 030 K when the wavelength is between 8 μm to 16 μm.
作者
舒心
郝小鹏
宋健
原遵东
薛生虎
胡朝云
SHU Xin;HAO Xiao-peng;SONG Jian;YUAN Zun-dong;XUE Sheng-Hu;HU Chao-yun(College of Metrology&Measurement Engineering,China Jiliang University,Zhejiang,Hangzhou 310018,China;National Institute of Metrology,Beijing 100029,China;College of Applied Nuclear Technology and Automation Engineering,Chengdu University of Technology,Chengdu,Sichuan 610059,China)
出处
《计量学报》
CSCD
北大核心
2019年第1期13-19,共7页
Acta Metrologica Sinica
基金
国家重点研发计划(2018YFB0504700
2018YFB0504702)
国家自然科学基金(11475162)
关键词
计量学
黑体辐射源
真空红外亮温
发射率
不确定度
metrology
blackbody radiation source
vacuum infrared radiance temperature
emissivity
uncertainty