期刊文献+

基于改进神经网络算法的电子设备控制方法仿真

Simulation of Electronic Equipment Control Method Based on Improved Neural Network Algorithm
下载PDF
导出
摘要 文章主要基于改进神经网络算法的电子设备控制方法仿真进行研究分析,结合当前电子设备控制方法应用现状为根据。在社会发展以及科学技术进步基础上,神经网络算法得到非常广泛的应用,尤其是其中的遗传算法更是对神经网络算法的应用起到重要的推动作用,利用电子设备对其进行严格控制,并且将这种方法应用到球杆系统进行观察,这种形式具有结构简单、泛化能力强以及控制效果好的优势。 This article mainly based on the analysis of control method for simulation of electronic equipment improved neural network algorithm, combined with the current control method for electronic equipment. According to the application status in the social development and progress of science and technology based on neural network algorithm has been widely used, especially in which the genetic algorithm is an important role in promoting the application of the neural network algorithm, strict control of the use of electronic equipment, and apply this method to the club system were observed, this form has the advantages of simple structure, strong generalization ability and good control effect.
作者 赵慧娟
出处 《佳木斯职业学院学报》 2017年第11期409-410,共2页 Journal of Jiamusi Vocational Institute
关键词 神经网络算法 电子设备控制方法 研究分析 neural network algorithm electronic equipment control method research and analysis
  • 相关文献

参考文献3

二级参考文献33

  • 1程其云,孙才新,张晓星,周湶,杜鹏.以神经网络与模糊逻辑互补的电力系统短期负荷预测模型及方法[J].电工技术学报,2004,19(10):53-58. 被引量:23
  • 2张国华,张展羽,邵光成,殷国玺.基于粒子群优化算法的灌溉渠道配水优化模型研究[J].水利学报,2006,37(8):1004-1008. 被引量:51
  • 3王波,王灿林,梁国强.基于粒子群寻优的D-S算法[J].传感器与微系统,2007,26(1):84-86. 被引量:14
  • 4吴杰康,陈明华,陈国通.基于PSO的模糊神经网络短期负荷预测[J].电力系统及其自动化学报,2007,19(1):63-67. 被引量:11
  • 5Senthil Arumugam M, Rao M V C, Chandramohan A. A new and improved version of particle swarm optimization algorithm with global-local best parameters[J]. Knowledge and Information Systems, 2008, 16(3): 15-26.
  • 6Shi B, Li Y X, Yu X H, et al. A modified particle swarm optimization and radial basis function neural network hybrid algorithm model and its application[C]//2009 WRI Global Congress on Intelligent Systems (GCIS 2009), 2009, 1:134-138.
  • 7Omkar S N, Mudigere D, Narayana Naik G, et al. Vector evaluated particle swarm optimization for multiobjective design optimization of composite structures[J]. Computers and Structures, 2008, 86(1-2): 45-56.
  • 8葛哲学,孙志强,神经网络理论与MATLABR2007实现[M].北京:电子工业出版社,2005:67-69.
  • 9ANTONINI A,DESCHRIJVER D,DHAENE T.Broadband rational macromodeling based on the adaptive frequency sampling algorithm and the partial element equivalent circuit method[J].IEEE Trans on Electromagnetic Compatibility,2008,50(1):128-137.
  • 10SRIDHAR A,NAKHLA N,ACHAR R,et al.Fast EMC analysis of high-speed interconnects via waveform relaxation apd transverse partitioning[C] //IEEE International Symposium on Electrical Performance of Electronic Packaging.Piscataway,NJ,USA.IEEE,2007:329-332.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部