摘要
本文根据已有的微分方程基础知识,讨论了复杂二阶常系数非齐次微分方程,形如y''+py'+qy=e^(λx)[(α_0+α_1x)cosωx+(b_0+b_1x)sinωx]的特解的一般公式。通过应用公式,避免了求解三因式相乘的二阶导数的繁杂工作,大大化简了特解的求解过程,从而删繁就简。
In this paper, we discuss the complex second order nonhomogeneous differential equations with constant coefficients according to the basic knowledge of differential equations, general formula of special solution such as y''+py'+qy=e^(λx)[(α_0+α_1x)cosωx+(b_0+b_1x)sinωx].By applying the formula, the complicated work of solving the second derivative of the multiplication of the three factors is avoided, and the process of solving the special solution is greatly simplified.
出处
《佳木斯职业学院学报》
2018年第3期304-305,共2页
Journal of Jiamusi Vocational Institute
基金
宿迁学院精品课程项目(项目编号:2016XJP05)
关键词
微分方程
特解
特征方程
特征根
differential equation
special solution
characteristic equation
characteristic root