期刊文献+

一类具分布时滞的三阶非线性泛函微分方程的振动性和渐近性

Oscillation and Asymptotic Behavior of a Class of Third Order Nonlinear Functional Differential Equations with Distributed Delays
下载PDF
导出
摘要 在本文中,我们重点研究几个泛函微分方程的振动和渐近行为。本文还研究了三阶非线性中立分布时滞微分方程的振动和三阶非线性中立型多分布时滞微分方程的振动。我们使用一般Riccati和对称不等式,来测试非线性第三线性泛函微分方程的振动和渐近行为。设定了解决振动或聚焦零方程的两个新的富集条件。在研究过程中,创建了两个方程的几个新解的振动的充实要求,并使用算子和积分模式实行了恰当的对比定理。由此产生的定理扩张并优化了现有的结果,也适用于中性微分方程。 In this paper,we focus on the oscillation and asymptotic behavior of several functional differential equations.In this paper,the oscillations of third-order nonlinear neutral distributed delay differential equations and third-order nonlinear neutral multi-distributed delay differential equations are also studied.We use general Riccati and symmetric inequalities to test the oscillation and asymptotic behavior of nonlinear third linear functional differential equations.Two new enrichment conditions are set up to solve the zero equation of vibration or focusing.In the course of the study,the sufficient requirements for the oscillation of several new solutions of the two equations are created,and the appropriate comparison theorem is implemented by using operators and integral modes.The resulting theorem extends and optimizes the existing results and is also applicable to neutral differential equations.
作者 陈劲 Chen Jin(Zhaotong College,Zhaotong Yunnan,657000,China)
机构地区 昭通学院
出处 《佳木斯职业学院学报》 2019年第2期294-294,296,共2页 Journal of Jiamusi Vocational Institute
关键词 三阶泛函微分方程 振动性 渐近性 Third-order functional differential equation Oscillation Asymptotic behavior
  • 相关文献

参考文献3

二级参考文献16

  • 1仉志余,王晓霞,林诗仲,俞元洪.非线性二阶中立型时滞微分方程的振动和非振动准则[J].系统科学与数学,2006,26(3):325-334. 被引量:24
  • 2Parhi N,Padhi S. Asymptotic behavior of solutions of third order delay differential equations[J]. Indian J Pure Appl Math,2002,33(10) .1609 - 1620.
  • 3Baculikova B, Elabbasy E M, Saker S H, et al. Oscillation criteria for third order nonlinear differen- tial equations[J].Math Slovaca, 2008,58 : 201 - 220.
  • 4Mojsej I. Asymptotic properties of solutions of third order nonlinear differential equations with de- viating argument[J].Nonlinear Anal, 2008,68 : 3581 - 3591.
  • 5Saker S H. Oscillation criteria of third order nonlinear delay differential equations[J]. Math Slova- ca,2006,56.433 - 450.
  • 6Baculikova B, Dzurina J. Oscillation of third order functional differential equations[J]. Electron J Qual Theory Differ Equ, 2010,43 :1 - 10.
  • 7Baculikova B,Dzurina J. Oscillation of third order nonlinear differential equations[J]. Appl Math Lett,2011,24.466 - 470.
  • 8Grace S R, Agarwal R P, Pavani R, at al. On the oscillation of certain third order nonlinear func- tional differential equations[J]. Appl Math Comput, 2008,202 : 102 - 112.
  • 9Philos Ch G. Oscillation theorems for linear differential equations of second order[J]. Arch Math, 1989,53:482 -492.
  • 10Philos C G. on the existence of nonoscillatory solutions tending to zero at oo for differentialequations with positive delays [J]. Archivum Mathematicum, 1981,36(1): 168-178.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部