摘要
在本文中,我们重点研究几个泛函微分方程的振动和渐近行为。本文还研究了三阶非线性中立分布时滞微分方程的振动和三阶非线性中立型多分布时滞微分方程的振动。我们使用一般Riccati和对称不等式,来测试非线性第三线性泛函微分方程的振动和渐近行为。设定了解决振动或聚焦零方程的两个新的富集条件。在研究过程中,创建了两个方程的几个新解的振动的充实要求,并使用算子和积分模式实行了恰当的对比定理。由此产生的定理扩张并优化了现有的结果,也适用于中性微分方程。
In this paper,we focus on the oscillation and asymptotic behavior of several functional differential equations.In this paper,the oscillations of third-order nonlinear neutral distributed delay differential equations and third-order nonlinear neutral multi-distributed delay differential equations are also studied.We use general Riccati and symmetric inequalities to test the oscillation and asymptotic behavior of nonlinear third linear functional differential equations.Two new enrichment conditions are set up to solve the zero equation of vibration or focusing.In the course of the study,the sufficient requirements for the oscillation of several new solutions of the two equations are created,and the appropriate comparison theorem is implemented by using operators and integral modes.The resulting theorem extends and optimizes the existing results and is also applicable to neutral differential equations.
作者
陈劲
Chen Jin(Zhaotong College,Zhaotong Yunnan,657000,China)
出处
《佳木斯职业学院学报》
2019年第2期294-294,296,共2页
Journal of Jiamusi Vocational Institute
关键词
三阶泛函微分方程
振动性
渐近性
Third-order functional differential equation
Oscillation
Asymptotic behavior