期刊文献+

基于粗糙理论的RBF网络及其遥感影像分类应用 被引量:14

RBFNN Representation Based on Rough Sets and Its Application to Remote Sensing Image Classification
下载PDF
导出
摘要 将粗糙集合概念与模式分类过程相联系,构造粗糙集意义下的RBF网络表示形式,并利用遗传算法实现其粗糙逻辑机制。研究粗糙集意义下RBF映射理论在遥感影像分类应用中的具体算法和实现过程,以LandsatTM影像进行的土地覆盖分类实验为例,对分类过程和结果进行综合分析,认为该方法在网络结构、收敛性和分类精度等方面具有一定的优势。 Rough sets theory is a new tool for studying imprecision, vagueness, and uncertainty in data analysis. The artificial neural network has been applied widely to remote sensing data classification. This article combines artificial neural network with roughs sets, describes the semantic expression of rough sets under the meaning of setvalued measure and establishes a RBFNN modal based on rough sets. A rough logical learning mechanism of RBFNN based on rough sets is constructed. The survey and analysis of the RBFNN based on rough sets for the classification of remotelysensed multispectral image is presented. The proposed method was successfully applied in a classification of land cover with results confirming the flexibility and practicality of this rough approach.
作者 巫兆聪
出处 《测绘学报》 EI CSCD 北大核心 2003年第1期53-57,共5页 Acta Geodaetica et Cartographica Sinica
关键词 粗糙集 粗糙逻辑 径向基函数 遗传算法 遥感影像 分类 rough sets rough logic radial basis function genetic algorithm remote sensing image classification
  • 相关文献

参考文献5

  • 1ZENG Huang-lin. Rough Sets and Its Application[M]. Chongqing: Publishing House of Chongqing University, 1998. (in Chinese)
  • 2LUO Jian-cheng,ZHOU Cheng-hu. Radial Basis Function Map Theory Based Remote Sensing Image Classification Modal[ J]. Journal of Image and Graphics, 2000, 5A(2):94-99. (in Chinese)
  • 3YAN Ping-fan, ZHANG Chang-shui. Artificial Neural Network and Evolutionary Computation[ M]. Beijing:Tsinghua University Press, 2000. (in Chinese)
  • 4MITSUO G, CHENG Run-wei. Genetic Algorithms and Engineering Design[ M ]. Beijing: Science Press,2000. (in Chinese)
  • 5HUANG Xi-yue, LIU Han-dan, SHI Wei-ren. A Design of RBF Neural Networks Based on Genetic Algorithms[J]. Journal of Chongqing University (Natural Science Edition), 1998, 21 (2): 62-67. (in Chinese)

同被引文献168

引证文献14

二级引证文献244

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部