期刊文献+

Enhanced mechanical properties and thermal shock resistance of Si_2BC_3N ceramics with SiC coated MWCNTs 被引量:2

Enhanced mechanical properties and thermal shock resistance of Si_2BC_3N ceramics with SiC coated MWCNTs
原文传递
导出
摘要 Bulk Si_2 BC_3 N ceramics were reinforced with SiC coated multi-walled carbon nanotubes(MWCNTs). The phase compositions, mechanical properties, and thermal shock resistance, as well as the oxidation resistance of the designed Si_2 BC_3 N ceramics were comparatively investigated. The results show that nano SiC coating can be formed on MWCNTs through pyrolyzing polysilazane, which improves the oxidation resistance of MWCNTs. A stronger chemical bonding is formed between the SiC coated MWCNTs and SiC particles, contributing to improved flexural strength(532.1 MPa) and fracture toughness(6.66 MPa m1/2). Besides, the 2 vol% SiC coated MWCNTs reinforced Si_2 BC_3 N ceramics maintains much higher residual strength(193.0 MPa) after thermal shock test at 1000 ℃.The enhanced properties should be attributed to:(1) the breaking of MWCNTs and the debonding between MWCNTs and SiC interfaces, which leads to more energy dissipation;(2) the rough surfaces of SiC coated MWCNTs increase the adhesion strength during the "pull out" of MWCNTs. Bulk Si_2 BC_3 N ceramics were reinforced with SiC coated multi-walled carbon nanotubes(MWCNTs). The phase compositions, mechanical properties, and thermal shock resistance, as well as the oxidation resistance of the designed Si_2 BC_3 N ceramics were comparatively investigated. The results show that nano SiC coating can be formed on MWCNTs through pyrolyzing polysilazane, which improves the oxidation resistance of MWCNTs. A stronger chemical bonding is formed between the SiC coated MWCNTs and SiC particles, contributing to improved flexural strength(532.1 MPa) and fracture toughness(6.66 MPa m1/2). Besides, the 2 vol% SiC coated MWCNTs reinforced Si_2 BC_3 N ceramics maintains much higher residual strength(193.0 MPa) after thermal shock test at 1000 ℃.The enhanced properties should be attributed to:(1) the breaking of MWCNTs and the debonding between MWCNTs and SiC interfaces, which leads to more energy dissipation;(2) the rough surfaces of SiC coated MWCNTs increase the adhesion strength during the "pull out" of MWCNTs.
出处 《Journal of Advanced Ceramics》 SCIE CSCD 2019年第1期121-132,共12页 先进陶瓷(英文)
基金 supported financially by National Natural Science Foundation of China (NSFC, Grant Nos. 51702065 and 51621091) China Postdoctoral Science Foundation (Grant No. 2018M631924)
关键词 Si2BC3N CERAMICS SIC COATED MWCNTS mechanical properties THERMAL shock resistance Si_2BC_3N ceramics SiC coated MWCNTs mechanical properties thermal shock resistance
  • 相关文献

参考文献4

二级参考文献23

  • 1Baldus, H.E, Jansen, M., 1997. Novel high-performance ceramics: amorphous inorganic networks from molecular precursors. Angewandte Chemic International Edition in English, 36(4):329-343. [doi:l 0.1002/anie. 199703281].
  • 2Butchereit, E., Nickel, K.G., Muller, A., 2001. Precursor derived Si-B-C-N ceramics: oxidation kinetics. Journal of the American Ceramic Society, 84(10):2184-2188. [doi:10.1111/j.1151-2916.2001 .tb00985.x].
  • 3Christ, M., Thum, G., Weinmann, M., Bill, J., Aldinger, F., 2000. High-temperature mechanical properties of Si-B-C- N-precursor-derived amorphous ceramics and the applicability of deformation models developed for metallic glasses. Journal of the American Ceramic Society, 83(12):3025-3032. [doi:10.1111/j.1151-2916.2000.tb016 78.x].
  • 4Du, Y.J., Li, S.Y., Zhang, K., Lu, K., 1997. BN/AI composite formation by high-energy ball milling. Scripta Materialia, 36(1): 7-14. [doi: 10.1016/S1359-6462(96)00335-1].
  • 5Jansen, M., Jaschke, B., Jaschke, T., 2002. Structure & Bonding: High Performance Non-oxide Ceramics I. Springer Berlin, Heidelberg, p. 137-191.
  • 6Muller, A., Gerstel, P., Butchereit, E., Nickel, K.G., Aldinger, F., 2004. Si/B/C/N/A1 precursor-derived ceramics: Synthesis, high temperature behaviour and oxidation resistance. Journal of the European Ceramic Society, 24(12): 3409-3417. [doi:10.1016/j.jeurceramsoc.2003.10.018].
  • 7Page, T.F., 1990. Silicon Carbide: Structure and Polytypic Transformations. The Physics and Chemistry of Carbides, Nitrides and Borides. Kluwer Academic Publishers, Dordrecht, the Netherlands, p. 197-214.
  • 8Pan, Y.B., Qiu, J.H., Morita, M., Tan, S.H., Jiang, D.L., 1998. The mechanical properties and microstructure of SiC-AlN particulate composite. Journal of Materials Science, 33(5): 1233-1237.
  • 9Riedel, R., Kienzle, A., Dressier, W., Ruwisch, L., Bill, J., Aldinger, F., 1996. A silicoboron carbonitride ceramic stable to 2000 ℃. Nature, 382(6594):796-798. [doi:10.10381382796a0].
  • 10Riedel, R., Ruswisch, L.M., An, L., Raj, R., 1998. Amorphous siliconboron carbonitride ceramic with very high viscosity at temperatures above 1500 ℃. Journal of the American Ceramic Society, 81(12):3341-3344. [doi:10. 1111/j.ll 51-2916.1998.tbO2780.x].

共引文献14

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部