期刊文献+

Preparation and thermoelectric properties of Cu1.8S/CuSbS2 composites 被引量:2

Preparation and thermoelectric properties of Cu1.8S/CuSbS2 composites
原文传递
导出
摘要 Chalcostibite(CuSbS2)is composed of earth-abundant elements and has a proper band gap(Eg=1.05 eV)as a thermoelectric(TE)material.Herein,we report the TE properties in the CuSbS2 based composites with a mole ratio of(1–x)CuSbS2–x Cu1.8S(x=0,0.1,0.2,0.3),which were prepared by mechanical alloying(MA)combined with spark plasma sintering(SPS).X-ray diffraction(XRD)and back-scattered electron image(BSE)results indicate that a single phase of CuSbS2 is synthesized at x=0 and the samples consist of CuSbS2,Cu3SbS4,and Cu12Sb4S13 at 0.1≤x≤0.3.The correlation between the phase structure,microstructure,and TE transport properties of the bulk samples is established.The electrical conductivity increases from 0.14 to 50.66 S·cm–1 at 723 K and at0≤x≤0.03,while the Seebeck coefficient holds an appropriate value of 190.51μV·K–1.The highest ZT value of 0.17 is obtained at 723 K and at x=0.3 owing to the combination of a high PF183μW·m–1·K–2 and a lowκ0.8 W·m–1·K–1. Chalcostibite(CuSbS2)is composed of earth-abundant elements and has a proper band gap(Eg=1.05 eV)as a thermoelectric(TE)material.Herein,we report the TE properties in the CuSbS2 based composites with a mole ratio of(1–x)CuSbS2–x Cu1.8S(x=0,0.1,0.2,0.3),which were prepared by mechanical alloying(MA)combined with spark plasma sintering(SPS).X-ray diffraction(XRD)and back-scattered electron image(BSE)results indicate that a single phase of CuSbS2 is synthesized at x=0 and the samples consist of CuSbS2,Cu3SbS4,and Cu12Sb4S13 at 0.1≤x≤0.3.The correlation between the phase structure,microstructure,and TE transport properties of the bulk samples is established.The electrical conductivity increases from 0.14 to 50.66 S·cm–1 at 723 K and at0≤x≤0.03,while the Seebeck coefficient holds an appropriate value of 190.51μV·K–1.The highest ZT value of 0.17 is obtained at 723 K and at x=0.3 owing to the combination of a high PF183μW·m–1·K–2 and a lowκ0.8 W·m–1·K–1.
出处 《Journal of Advanced Ceramics》 SCIE CSCD 2019年第2期209-217,共9页 先进陶瓷(英文)
基金 supported by National Key R&D Program of China (Grant No. 2018YFB0703600) the National Natural Science Foundation of China (Grant No. 11474176)
关键词 CuSbS2 PHASE structure ZT THERMOELECTRIC CuSbS2 phase structure ZT thermoelectric
  • 相关文献

参考文献2

二级参考文献1

共引文献93

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部