期刊文献+

应用主方程方法研究分子马达的定向运动 被引量:3

MASTER EQUATION APPROACH TO MOLECULAR MOTOR'S DIRECTED MOTION
下载PDF
导出
摘要 利用主方程的方法,研究了在一维三态周期跳跃模型下分子马达的定向运动。首先假定马达在任意两个相邻状态之间的跃迁距离(substeps)相等,对于给定的任意初始分布,得出了与时间有关的几率分布的解析表达式,包括到达稳态之前的所有的瞬态过程,由此可获得马达在各个时刻的漂移速度v、扩散系数D以及描述马达随机性质的随机参数r(randomness parameter)。同时还计算了马达到达稳态所需要的特征时间。根据马达的运动特点,我们又把以上结果推广到了不等间隔的情况,并引入了外力分配系数θj+和θj-来表征外力对跃迁率的影响程度,以便于研究马达在拖动负载运动时的动力学行为,使之更符合生物化学的实际。并把计算结果(漂移速度v和随机参数r分别随[ATP]和外力f的变化关系)同实验进行了比较,与实验值符合较好。 The master equation approach to molecular motor's directed motion based on periodic one-dimensional three-state hopping model is studied. First, It was assumed that the step distance between arbitrary successive states (d j ) is equal. An explicit solution is obtained for the probability distribution as a function of the time for any initial distribution with all the transients included, and the drift velocity v, the diffusion constant D and the randomness parameter r can also be obtained at any time from the probability distribution. Meanwhile, the characteristic time for the motor to reach steady state was calculated. But, the real molecular motor's motion is not the simple equal-distance transition, the substep lengths is always unequal and the effect of an external load f on individual chemical states is not equal. Thus, in the case of inequality of substep lengths the load distribution factors θ j+ and θ j- which reflect how the external load f affects the transition rates were introduced. In this way the dynamical behaviors of molecular motor under external load f can be conveniently studied. By comparison with experimental result (drift velocity v and randomness parameter r versus and external load f), it is shown that the model presented here can explain the available data rather satisfactorily.
作者 冯娟 卓益忠
出处 《生物物理学报》 CAS CSCD 北大核心 2002年第4期418-428,共11页 Acta Biophysica Sinica
基金 国家自然科学基金项目(10075007)
关键词 分子马达 跳跃模型 几率分布 转换速率 Molecular motor Hopping model Probability distribution Transition rate
  • 相关文献

参考文献19

  • 1Goldstein LSB, Philip AV. The load less traveled: emerging principles of kinesin motor utilization[J]. Annu Rev Cell Dev Biol, 1999,15:141-183.
  • 2Vale RD, Milligan RA. The way things move: looking and the hood molecular motor proteins[J]. Science, 2000,288:88-95.
  • 3Schief WR, Howard J. Conformational changes during kinesin molitily[J]. Current Opinion In Cell Biology, 2001,13:19-28.
  • 4Rice S, Lin AW, Safer D. A structural change in the kinesin motor protein that drives molitily[J]. Nature, 1999,402:778-784.
  • 5Kikkawa M, Sablin EP. Switched-based mechanism of kinesin motors[J]. Nature, 2001,411:439-445.
  • 6Anatoly B, Kolomeisky, Widom B. The simplified "ratchet" model of molecular motors[J]. J Stat Phys, 1998,93(314):633-645.
  • 7Derrida B. Velocity and diffusion constant of a periodic one-dimensional hopping model[J]. J Stat Phys, 1983,31(3):433-450.
  • 8Fisher ME, Kolomeriky AB. Periodic sequential kinetic models with jumping, branching and deaths[J]. Physica A, 2001,279:1-20.
  • 9Qian H. A simple theory of motor protein kinetics and energetics(Ⅰ)[J]. Biophys Chem, 1997,67:263-267.
  • 10Qian H. A simple theory of motor protein kinetics and energetics(Ⅱ)[J]. Biophys Chem, 2000,83:35-43.

同被引文献35

  • 1Collins TR, Hammes GG, Hsieh TS. Analysis of the eukaryotic topoisomerase II DNA gate: A single-molecule FRET and structural perspective. Nucleic Acids Res, 2009, 37(3): 712-720.
  • 2Bates AD, Maxwell A. Energy coupling in type II topoisomerases: why do they hydrolyze ATP? Biochemistry, 2007, 46(27): 7929-7941.
  • 3Miller KG, Liu LF, Englund PT. A homogeneous type II DNA topoisomerase from HeLa cell nuclei. J Biol Chem, 1981, 256(17): 9334-9339.
  • 4Osheroff N, Shelton ER, Brutlag DL. DNA topoisomerase II from Drosophila melanogaster. Relaxation of supercoiled DNA. J Biol Chem, 1983, 258(15): 9536-9543.
  • 5Lindsley JE, Wang JC. On the coupling between ATP usage and DNA transport by yeast DNA topoisomerase II. J Biol Chem, 1993, 268(11): 8096-8104.
  • 6Baird CL, Harkins TT, Morris SK, Lindsley JE. Topoisomerase II drives DNA transport by hydrolyzing one ATP. Proc Natl Acad Sci USA, 1999, 96(24): 13685-13690.
  • 7Morris SK, Baird CL, Lindsley JE. Steady-state and rapid kinetic analysis of topoisomerase II trapped as the closed-clamp intermediate by ICRF-193. J Biol Chem, 2000, 275(4): 2613-2618.
  • 8Campbell S, Maxwell A. The ATP-operated clamp of human DNA topoisomerase II alpha: hyperstimulation of ATPase by "piggy-back" binding. J Mol Biol, 2002, 320(2): 171-188.
  • 9Harkins TT, Lindsley JE. Pre-steady-state analysis of ATP hydrolysis by Saccharornyces cerevisiae DNA topoisomerase II. 1. A DNA-dependent burst in ATP hydrolysis. Biochemistry, 1998, 37(20): 7292-7298.
  • 10Harkins TT, Lewis T J, Lindsley JE. Pre-steady-state analysis of ATP hydrolysis by Saccharomyces cerevisiae DNA topoisomerase II. 2. Kinetic mechanism for the sequential hydrolysis of two ATP. Biochemistry, 1998, 37(20): 7299-7312.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部