期刊文献+

无人机编队飞行快速试验系统设计 被引量:10

Development of an Experiment System for UAV Formation Flight
原文传递
导出
摘要 为缩小针对无人机编队控制问题的理论研究与实际应用之间的脱节,设计了一套无人机编队飞行快速试验系统,包括基于X-Plane的硬件在回路(HIL)仿真系统和飞行试验系统.HIL仿真系统和飞行试验系统中使用相同的自驾仪和地面控制站,通过HIL仿真可以提前发现并修正在仿真中暴露的问题,从而减少飞行试验所需的时间和成本,缩短方法从理论到应用的时间.试验系统中解决了无人机之间及无人机与地面站之间的通信问题,使得无人机之间可以直接通信,不用通过地面站转发,且单个地面站可以监视和管理多架无人机.采用网络化的软、硬件设计,使得试验系统能够用于验证各种通信拓扑的编队控制算法.为验证上述系统的有效性,设计长机-僚机编队控制方法对试验系统进行验证.结果表明,通过HIL仿真验证的自驾仪可以直接移植到飞行试验系统中,只需微调一些控制参数即可快速实现无人机编队飞行. To narrow the gap between the theory and practice in UAV (unmanned aerial vehicle) formation control, a formation flight experiment system is developed, which includes an X-Plane based hardware-in-the-loop (HIL) simulation subsystem and a flight experiment subsystem. In the two subsystems, the same autopilot and ground control station are used. By the HIL simulation, defects and bugs emerging in the simulation can be found and modified before field experiment. Therefore, the time and cost required by flight experiments are reduced, and the time from theory to application can be shortened. Besides, communications between the vehicles and between the vehicle and the ground station are well tackled. The vehicles can share information via inter-vehicle communication without intervention of ground stations. Moreover, multiple UAVs can be monitored and managed by one ground control station. By network-based software and hardware designs, the experiment subsystem can be used to validate formation control algorithms based on various communication topologies. A leader-follower formation approach is designed to demonstrate the effectiveness of the entire experiment system. The results show that the autopilot validated by the HIL simulation can be applied to the flight experiment subsystem directly. The only work required by the actual formation flight is to perform a little fine adjustment on some control parameters. © 2017, Science Press. All right reserved.
出处 《机器人》 EI CSCD 北大核心 2017年第2期160-166,175,共8页 Robot
关键词 无人机 编队飞行 硬件在回路仿真 X-Plane 飞行试验 Air navigation Hardware Intelligent vehicle highway systems Rock mechanics Synthetic apertures Traction (friction) Unmanned aerial vehicles (UAV) Vehicles
  • 相关文献

参考文献3

二级参考文献174

  • 1程代展,陈翰馥.从群集到社会行为控制[J].科技导报,2004,22(8):4-7. 被引量:32
  • 2任德华,卢桂章.对队形控制的思考[J].控制与决策,2005,20(6):601-606. 被引量:51
  • 3原魁,李园,房立新.多移动机器人系统研究发展近况[J].自动化学报,2007,33(8):785-794. 被引量:73
  • 4Pachter M,D'Azzo J J,Dargan J L.Automatic formation flight control[J].Journal of Guidance,Control,and Dynamics,1994,17(6):1380-1383.
  • 5Seanor B,Campa G,Gu Y,et al.Formation flight test results for UAV research aircraft models[C] //AIAA 1st Intelligent Systems Technical Conference.Reston,VA,USA:AIAA,2004:230-243.
  • 6苏厚胜.多智能体蜂拥控制问题研究[D].上海:上海交通大学,2008.
  • 7Hubbard S, Babak B, Sigurdsson S T, et al. A model of the formation of fish schools and migrations of fish[J]. Ecological Modelling, 2004, 174(4): 359-374.
  • 8Toner J, Tu Y. Hydrodynamics and phases of flocks[J]. Annals Phys, 2005, 318: 170-244.
  • 9Janson S, Middendorf M, Beekman M. Honey bee swarms: How do scouts guide a swarm of uninformed bees?[J]. Animal Behaviour, 2005, 70(2): 349-358.
  • 10Couzin ! D, Krause J, Franks N R, et al. Effective leadership and decision-making in animal groups on themove[J]. Nature, 2005, 433(3): 513-516.

共引文献148

同被引文献62

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部