期刊文献+

脊柱微创主从式手术机器人阻抗控制系统研制 被引量:6

Design of Master-Slave Operation Robot Based on Impedance Control in Minimally Invasive Spinal Surgery
原文传递
导出
摘要 针对面向脊柱微创手术的机器人系统,提出了适用于双系统的阻抗控制策略,开展了相关的理论分析和实验验证研究.首先通过运动学计算得出末端执行器到关节角的关系,然后通过阻抗关系模型推导得出力与位置之间的转化公式,最后通过位置控制计算每个关节角的实际位置.本文解决了力和位置控制难以协调这一关键问题,提高了脊柱微创手术机器人力和位置控制的精确性,保证了主手和从手之间位置和力的一致性,使得从手的状态在主手得以精准复现.在手术层面上,系统将医生从长期的繁重操作中解救出来,提升了脊柱微创手术的操作精度和最终效果. Aiming at the robot systems for minimally invasive spine surgery(MTSS), an impedance control strategy suitable for double systems is put forward, and related analysis and experimental research are carried out. Firstly, the relationship between the end-effector and the joint angle is obtained through kinematics calculation. Then, conversion formula between the force and the position is deduced based on the impedance relationship model. Finally, the actual angle of each joint is calculated through position control. This paper solves the coordination control problems of force and position, improves the accuracy of force and position control in MTSS robots, ensures the position and force consistency between the master and slave robots, and makes the master robot reproduce states of the slave robot accurately. At the operation level, the proposed system can save the doctor from long-term heavy operation and improve the operation accuracy and final effect of MTSS.
出处 《机器人》 EI CSCD 北大核心 2017年第3期371-376,共6页 Robot
基金 国家自然科学基金(61333019)
关键词 脊柱微创手术 力反馈 阻抗控制 主从式手术机器人 minimally invasive spine surgery force feedback impedance control master-slave surgical robot
  • 相关文献

参考文献3

二级参考文献33

  • 1Taylor R H, Paul HA, Kazandzides P, et al. An image-directed robotic system for precise orthopaedic surgery. IEEE Trans Robot and Automation, 1994, 10:261-275.
  • 2Bach CM, Winter P, Nogler M, et al. No functional impairment after Robodoc total hip arthroplasty: gait analysis in 25 patients. Acta Orthop Scand, 2002, 73:386-391.
  • 3Honl M, of robotic a primary study. J Bone Dierk O, Gauck C, et al. Comparison -assisted and manual implantation of total hip replacement. A prospective Joint Surg(Am), 2003, 85:1470-1478.
  • 4Lieberman I H, Togawa D, Kayanja M M, et al. Bone-mounted Miniature Robotic Guidance for Pedicle Screw and Translaminar Facet Screw Placement: Part I-Technical Development and a Test Case Result. Neurosurgery, September 2006, 59(3):641-650.
  • 5Togawa D, Kayanja M M, Reinbardt M K, et al. Bone-Mounted Miniature Robotic Guidance for Pedicle Screw and Translaminar Facet Screw Placement: Part 2-Evaluation of System Accuracy. Neurosurgery, February 2007, 60(2):129-139.
  • 6Siebert W, Mai S, Kober R, et al. Technique and first clinical results of robot-assisted total knee replacement. Knee, 2002, 9:173-180.
  • 7Davies B L, Fan K L, Hibberd, et al. ACROBOT- using robots and surgeons synergistically in knee surgery. ICAR 97: Monterey, CA, 1997:7-9.
  • 8Brandt G, Zimolong A, Carrat L, et al. CRIGOS: a compact robot for image-guided orthopedic surgery. IEEE Trans Inf Technol Biomed, 1999, 4:252-260.
  • 9Kwon D S, Yoon Y S, Lee J J, et al. ARTHROBOT: a new surgical robot system for total hip arthroplasty. In Proc. IEEE/RSJ Int. Confi Intelligent Robots and Systems, 2001:1123-1128.
  • 10Wolf A, Jaramaz B, Lisien B, et aI. MBARS: mini bone-attached robotic system for joint arthorplasty. International Journal of Medical Robotics and Computer Assisted Surgery, 2005,2:101-121.

共引文献44

同被引文献35

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部